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Introduction

Based on applications of

and

to L-functions of elliptic curves (work in progress with J. Aycock)
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Introduction

Motivation: How are different zeta and L-functions related? Do they
fit into a common framework?

motivic L-functions
Zmot(E, t)

local L-functions
Z(E/Fq, t)

arithmetic L-functions
L(E, s)

motivic measure #q

local factors



Introduction Incidence Algebras Objective Linear Algebra Applications

Introduction

Motivation: How are different zeta and L-functions related? Do they
fit into a common framework?

motivic L-functions
Zmot(E, t)

local L-functions
Z(E/Fq, t)

arithmetic L-functions
L(E, s)

motivic measure #q

local factors



Introduction Incidence Algebras Objective Linear Algebra Applications

Varieties over Finite Fields

Let X be an algebraic variety over Fq. Its point-counting zeta function
is the power series

Z(X, t) = exp

[ ∞∑
n=1

#X(Fqn)

n
tn

]

Historically, this is called a zeta function because it has:

a product formula Z(X, t) =
∏
x∈|X|

1

1− tdeg(x)

a functional equation
an expression as a rational function
a Riemann hypothesis which is a theorem!
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Varieties over Finite Fields

We can formalize certain properties of Z(X, t) in an algebra of
“arithmetic functions”.

Let Zeff
0 (X) be the set of effective 0-cycles on X, i.e. formal N0-linear

combinations of closed points of X, written α =
∑
mxx.

We say β ≤ α if β =
∑
nxx with nx ≤ mx for all x ∈ |X|.

Let AX = {f : Zeff
0 (X)→ C} be the algebra of arithmetic functions

with
(f ∗ g)(α) =

∑
β≤α

f(β)g(α− β).

We call the distinguished element ζ : α 7→ 1 the zeta function of X.
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Varieties over Finite Fields

Let AX = {f : Zeff
0 (X)→ C} be the algebra of arithmetic functions

with
(f ∗ g)(α) =

∑
β≤α

f(β)g(α− β).

The degree map Zeff
0 (X)→ Zeff

0 (SpecFq) ∼= Z determines an algebra
map

AX −→ ASpec Fq
∼= C[[t]]

f ↔
∞∑
n=0

f(n)tn

f 7−→

“ deg∗(f)” : n 7→
∑

deg(α)=n

f(α)


ζ 7−→ “ deg∗(ζ)”↔ Z(X, t)
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What’s really going on?

These AX are examples of reduced incidence algebras, which
come from a much more general simplicial framework.
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Numerical Incidence Algebras

Idea (due to Gálvez-Carrillo, Kock and Tonks): zeta functions don’t
just come from posets, but from higher homotopy structure.

In this talk: zeta functions come from decomposition sets.

In general: zeta functions come from decomposition spaces.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

A poset P determines a simplicial set NP with:
0-simplices = elements x ∈ P
1-simplices = intervals [x, y]

2-simplices = decompositions [x, y] = [x, z] ∪ [z, y]

etc.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

More generally, any category C determines a simplicial set NC with:
0-simplices = objects x in C

1-simplices = morphisms x f−→ y in C

2-simplices = decompositions x h−→ y = x
f−→ z

g−→ y

etc.
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Numerical Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition
The numerical incidence coalgebra of a decomposition set S is the
free k-vector space C(S) =

⊕
x∈S1

kx with comultiplication

C(S) −→ C(S)⊗ C(S)

x 7−→
∑
σ∈S2
d1σ=x

d2σ ⊗ d0σ.

σd2σ d0σ

d1σ
0

1

2
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Numerical Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition
The numerical incidence algebra of a decomposition set S is the
dual vector space I(S) = Hom(C(S), k) with multiplication

I(S)⊗ I(S) −→ I(S)

f ⊗ g 7−→ (f ∗ g)(x) =
∑
σ∈S2
d1σ=x

f(d2σ)g(d0σ).
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d1σ
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1

2
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Numerical Incidence Algebras

Definition
The numerical incidence coalgebra of a decomposition set S is the
free k-vector space C(S) =

⊕
x∈S1

kx.

Definition
The numerical incidence algebra of a decomposition set S is the
dual vector space I(S) = Hom(C(S), k) with multiplication f ∗ g.

In I(S) = Hom(C(S), k), there is a distinguished element called the
zeta function ζ : x 7→ 1.
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Objective Linear Algebra

The construction of I(S) can be generalized further using the
formalism of objective linear algebra (“linear algebra with sets”):

Numerical Objective
basis B set B

vector v set map v : X → B

matrix M span
B C

M
s t

vector space V slice category Set/B

linear map with matrix M linear functor t!s∗ : Set/B → Set/C

tensor product V ⊗W Set/B ⊗Set/C ∼= Set/B×C

To recover vector spaces, take V = kB and take cardinalities.
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Abstract Incidence Algebras

How do we construct I(S) as an “objective vector space”?

Numerical Objective
basis B set B

vector space V slice category Set/B

So an element f ∈ I(S) is a linear functor f = t!s
∗ : Set/S1

→ Set
represented by a span

f =


S1 ∗

M
s t
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Abstract Incidence Algebras

So an element f ∈ I(S) is a linear functor f = t!s
∗ : Set/S1

→ Set
represented by a span

f =


S1 ∗

M
s t


Example

The zeta functor is the element ζ ∈ I(S) represented by

ζ =


S1 ∗

S1

id
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Abstract Incidence Algebras

Example

For two elements f, g ∈ I(S) represented by

f =


S1 ∗

M
s

 and g =


S1 ∗

N
t


the convolution f ∗ g ∈ I(S) is represented by

(f ∗ g) =

 S1 S1 × S1 ∗

S2 M ×N

P

d1
(d2, d0)

s× t
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Elliptic Curves

For an elliptic curve E/Fq, the zeta function Z(E, t) can be written

Z(E, t) =
1− aqt+ qt2

(1− t)(1− qt)
= Z(P1, t)L(E, t).

Theorem (Aycock–K., ‘22+ε)

In the reduced incidence algebra Ĩ(E) := Ĩ(Zeff
0 (E)), there is an

equivalence of linear functors

π∗ζE + ζP1 ∗ L(E)− ∼= ζP1 ∗ L(E)+

where π : E → P1 is a fixed double cover and L(E)+ and L(E)− are
functors in Ĩ(P1).

Pushing forward to Ĩ(SpecFq) and taking cardinalities, it reads

π∗ζE = π∗ζP1 ∗ (L(E)+ − L(E)−) = π∗ζP1 ∗ L(E).
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Motivic Zeta Functions

For any k-variety X, Zmot(X, t) =

∞∑
n=0

[SymnX]tn decategorifies to

other zeta functions by applying motivic measures (point counting,
Euler characteristic, etc.)

Das–Howe (‘21) lift Zmot(X, t) to a numerical incidence algebra

Ĩmot(Γ
•,+(X)) =

∞∏
n=0

K0(Var/ΓnX)

where ΓnX are the divided powers of X.

Idea (in progress): lift Zmot(X, t) to an objective incidence algebra
I(Γ•,+(X)) in the category of simplicial k-varieties. Passing to K0

recovers Das and Howe’s construction.
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Highlights and Dreams for the Future

Advantages of the objective approach:
Intrinsic: zeta is built into the object S directly

General: most∗ zeta functions can be produced this way

Functorial: to compare zeta functions, find the right map S → T

Structural: proofs are categorical, avoiding choosing elements
(e.g. computing local factors of zeta functions explicitly is difficult)

It’s pretty fun to prove things!

Future work:
Construct ζX for an algebraic stack X
Lift L-functions of representations L(V )

Archimedean zeta functions.
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Thank you!
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