Non-orientable enumerative problems in \mathbb{A}^{1}-homotopy theory

Andrew J. Kobin

Algebra \& Number Theory Seminar
November 16, 2021

Joint work with Libby Taylor

Introduction

Goal of \mathbb{A}^{1}-enumerative geometry: count geometric objects over a field k (char $k \neq 2$) when the count is fixed over \bar{k}.

This can be done using Morel and Voevodsky's \mathbb{A}^{1}-homotopy theory (more on that later).
"Enriched counts" take values in the Grothendieck-Witt ring of quadratic forms:
$G W(k)=$ group completion of $\{$ nondegen. symm. bilinear forms $/ k\}$.

Introduction

Example (Lines on a smooth cubic)

The Cayley-Salmon Theorem says that for a smooth cubic surface X / \mathbb{C}, there are exactly 27 lines on X.

Over other fields, this count is not fixed, e.g. over \mathbb{R}, there can be 3,7 , 15 or 27 lines on X. However, there is a "signed count" which is fixed:
\#real hyperbolic lines on $X-$ \#real elliptic lines on $X=3$.

Introduction

Example (Lines on a smooth cubic)

The Cayley-Salmon Theorem says that for a smooth cubic surface X / \mathbb{C}, there are exactly 27 lines on X.

(Kass-Wickelgren '17) The lines on a smooth cubic surface X / k can be enumerated in $G W(k)$ by the class

$$
15\langle 1\rangle+12\langle-1\rangle
$$

where $\langle a\rangle$ is the class of the quadratic form $q(x)=a x^{2}$.

Introduction

Example (Lines in \mathbb{P}^{3})

Over \mathbb{C}, there are 2 lines meeting 4 general lines in \mathbb{P}^{3}.

(Srinivasan-Wickelgren '21) The lines meeting 4 general lines in \mathbb{P}^{3} can be enumerated in $G W(k)$ by the class

$$
\langle 1\rangle+\langle-1\rangle
$$

Introduction

Example (Lines in \mathbb{P}^{n})

More generally, over \mathbb{C} there are $\mathbf{c}(\mathbf{n}-1)$ lines intersecting $2 n-2$ general codimension 2 hyperplanes in \mathbb{P}^{n} when n is odd:

$$
c(n-1)=\frac{(2 n-2)!}{n!(n-1)!} \text { Catalan numbers }
$$

(Srinivasan-Wickelgren '21) The lines meeting $2 n-2$ general codimension 2 hyperplanes in \mathbb{P}^{n}, n odd, can be enumerated in $G W(k)$ by the class

$$
\frac{\mathbf{c}(\mathrm{n}-1)}{2}\langle 1\rangle+\langle-1\rangle
$$

Introduction

Other enumerative problems that have solutions in $G W(k)$ include:

- (Larson-Vogt '19) $16\langle 1\rangle+12\langle-1\rangle$ bitangents to a smooth plane quartic
- (McKean '20) Arithmetic Bézout's Theorem: the intersection of n general hypersurfaces in \mathbb{P}^{n} of degrees d_{1}, \ldots, d_{n} is enumerated by $\frac{\mathrm{d}_{\mathbf{1}} \cdots \mathrm{d}_{\mathrm{n}}}{2}(\langle\mathbf{1}\rangle+\langle-\mathbf{1}\rangle)$
- (Pauli '20) \mathbb{A}^{1}-enumerative version of Milnor numbers
- (Brazelton-McKean-Pauli '21) \mathbb{A}^{1}-Euler characteristics of Grassmannians
- (Kim-Park '21) \mathbb{A}^{1}-degrees of covers of modular curves
- (Bachmann-Wickelgren '21) 160839 1 1 $\rangle+160650\langle-1\rangle$ dimension 3 hyperplanes in a 7 -dimensional cubic hypersurface (and generalizations)

Introduction

These results* require an orientation on the vector bundle used to enumerate the geometric objects.

Libby Taylor and I extend these techniques to non-orientable vector bundles (and associated non-orientable enumerative problems) using algebraic stacks.

Mathematics > Algebraic Geometry

[Submitted on 14 Nov 2019 (v1), last revised 18 Aug 2020 (this version, v4)]
\mathbb{A}^{1}-Local Degree via Stacks
Andrew Kobin, Libby Taylor
We extend results of Kass--Wickelgren to define an Euler class for a non-orientable (or non-relatively orientable) vector bundle on a smooth scheme, valued in the Grothendieck--Witt group of the ground field. We use a root stack construction to produce this Euler class and discuss its relation to other versions of an Euler class in \mathbb{A}^{1}-homotopy theory. This allows one to apply Kass--Wickelgren's technique for arithmetic enrichments of enumerative geometry to a larger class of problems; as an example, we use our construction to give an arithmetic count of the number of lines meeting 6 planes in \mathbb{P}^{4}.

Outline of the talk

- Introduction
- The Grothendieck-Witt ring
- \mathbb{A}^{1}-local degree
- \mathbb{A}^{1}-Euler classes of vector bundles
- Non-oriented enumerative problems

Outline of the talk

- Introduction
- The Grothendieck-Witt ring
- \mathbb{A}^{1}-local degree
- \mathbb{A}^{1}-Euler classes of vector bundles
- Non-oriented enumerative problems

The Grothendieck-Witt ring

Let k be a field of characteristic $\neq 2$. The Grothendieck-Witt ring of k is the group completion $G W(k)$ of
\{nondeg. symm. bilinear forms on k \}/iso. under \oplus, \otimes.
An isomorphism class is represented by a bilinear form $b: V \times V \rightarrow k$ or equivalently a quadratic form $f(x)=b(x, x)$, e.g.

$$
\begin{array}{ll}
(x, y) \mapsto x \cdot y & \longleftrightarrow q(x)=\|x\|^{2} \\
(x, y) \mapsto x_{1} y_{1}-x_{2} y_{2} & \longleftrightarrow q(x)=x_{1}^{2}-x_{2}^{2} \\
(x, y) \mapsto x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3} & \longleftrightarrow q(x)=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}
\end{array}
$$

The Grothendieck-Witt ring

Let k be a field of characteristic $\neq 2$. The Grothendieck-Witt ring of k is the group completion $G W(k)$ of
\{nondeg. symm. bilinear forms on k \}/iso. under \oplus, \otimes.
$G W(k)$ is generated by symbols $\langle a\rangle$ for $a \in k^{\times} / k^{\times 2}$, denoting the iso. class of the rank 1 bilinear form $(x, y) \mapsto a x y$, satisfying:
(1) $\langle a\rangle\langle b\rangle=\langle a b\rangle$
(2) $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle$
(3) $\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle$, the hyperbolic form $x^{2}-y^{2}$

The Grothendieck-Witt ring

Example

For $k=\mathbb{C}$, rank gives an isomorphism

$$
\begin{aligned}
G W(\mathbb{C}) & \longrightarrow \mathbb{Z} \\
\langle a\rangle & \longmapsto 1
\end{aligned}
$$

The Grothendieck-Witt ring

Example

For $k=\mathbb{R}$, rank and signature give an isomorphism

$$
\begin{aligned}
G W(\mathbb{R}) & \longrightarrow \mathbb{Z} \times \mathbb{Z} \\
\langle a\rangle & \longmapsto \begin{cases}(1,1), & a>0 \\
(1,-1), & a<0\end{cases}
\end{aligned}
$$

The Grothendieck-Witt ring

Example

For $k=\mathbb{F}_{q}$, rank and discriminant give an isomorphism

$$
\begin{aligned}
G W\left(\mathbb{F}_{q}\right) & \longrightarrow \mathbb{Z} \times \mathbb{F}_{q}^{\times} / \mathbb{F}_{q}^{\times 2} \\
\langle a\rangle & \longmapsto(1, a)
\end{aligned}
$$

The Grothendieck-Witt ring

Key idea: geometric configurations over k can be enumerated by classes in $G W(k)$ and classical solutions (e.g. over \mathbb{C} or \mathbb{R}) can be recovered by taking invariants of these classes (e.g. rank, signature, discriminant).

The Grothendieck-Witt ring

Key idea: geometric configurations over k can be enumerated by classes in $G W(k)$ and classical solutions (e.g. over \mathbb{C} or \mathbb{R}) can be recovered by taking invariants of these classes (e.g. rank, signature, discriminant).

Example

The $15\langle 1\rangle+12\langle-1\rangle$ lines on a smooth cubic surface become

- (rank) $15+12=27$ over $k=\mathbb{C}$
- (sign.) $15-12=3$ over $k=\mathbb{R}$
- (disc.) $15 \operatorname{disc}\langle 1\rangle+12 \operatorname{disc}\langle-1\rangle \equiv 0(\bmod 2)$ over $k=\mathbb{F}_{p^{2}}$
- etc.

Outline of the talk

- Introduction
- The Grothendieck-Witt ring
- \mathbb{A}^{1}-local degree
- \mathbb{A}^{1}-Euler classes of vector bundles
- Non-oriented enumerative problems

Topological degree

Recall: a continuous map $f: S^{n} \rightarrow S^{n}$ has degree $\operatorname{deg}(f) \in \mathbb{Z}$ defined by

$$
\operatorname{deg}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}(f)
$$

where y is a regular value of f and $\operatorname{deg}_{x}(f)$ is the local degree at x.

Topological degree

Recall: a continuous map $f: S^{n} \rightarrow S^{n}$ has degree $\operatorname{deg}(f) \in \mathbb{Z}$ defined by

$$
\operatorname{deg}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}(f)
$$

where y is a regular value of f and $\operatorname{deg}_{x}(f)$ is the local degree at x.
Local degree: in local coordinates about x, f determines a map
$\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $J=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ and

$$
\operatorname{deg}_{x}(f)= \begin{cases}+1, & J(x)>0 \\ -1, & J(x)<0\end{cases}
$$

Topological degree

Recall: a continuous map $f: S^{n} \rightarrow S^{n}$ has degree $\operatorname{deg}(f) \in \mathbb{Z}$ defined by

$$
\operatorname{deg}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}(f)
$$

where y is a regular value of f and $\operatorname{deg}_{x}(f)$ is the local degree at x.
We can view this as a homomorphism deg : $\left[S^{n}, S^{n}\right] \rightarrow \mathbb{Z}$.

\mathbb{A}^{1}-topological degree

Observation: as a real algebraic variety, $S^{n} \cong \mathbb{P}_{\mathbb{R}}^{n} / \mathbb{P}_{\mathbb{R}}^{n-1}$.

\mathbb{A}^{1}-topological degree

Observation: as a real algebraic variety, $S^{n} \cong \mathbb{P}_{\mathbb{R}}^{n} / \mathbb{P}_{\mathbb{R}}^{n-1}$.
Over arbitrary k, Morel ('06) constructed a map

$$
\operatorname{deg}^{\mathbb{A}^{1}}:\left[\mathbb{P}^{n} / \mathbb{P}^{n-1}, \mathbb{P}^{n} / \mathbb{P}^{n-1}\right]_{\mathbb{A}^{1}} \longrightarrow G W(k)
$$

using \mathbb{A}^{1}-homotopy theory.
Brief summary: cohomology functors on Sm_{k} are represented by objects in a category $S H(k)$ and we have
$\left[\mathbb{P}^{n} / \mathbb{P}^{n-1}, \mathbb{P}^{n} / \mathbb{P}^{n-1}\right]_{\mathbb{A}^{1}}=\operatorname{End}_{S H(k)}\left(\mathbb{P}^{n} / \mathbb{P}^{n-1}\right) \quad$ and $\quad G W(k) \cong \widetilde{C H}^{0}(k)$
for the functors $\left[-, \mathbb{P}^{n} / \mathbb{P}^{n-1}\right]_{\mathbb{A}^{1}}$ and $\widetilde{C H}^{0}(-) \cong K_{0}^{M W}(-)$.

\mathbb{A}^{1}-topological degree

Recall: a continuous map $f: S^{n} \rightarrow S^{n}$ has degree $\operatorname{deg}(f) \in \mathbb{Z}$ defined by

$$
\operatorname{deg}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}(f)
$$

where y is a regular value of f and $\operatorname{deg}_{x}(f)$ is the local degree at x.
Local degree: in local coordinates about x, f is a map
$\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $J=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ and

$$
\operatorname{deg}_{x}(f)= \begin{cases}+1, & J(x)>0 \\ -1, & J(x)<0\end{cases}
$$

\mathbb{A}^{1}-topological degree

A map $f: \mathbb{P}^{n} / \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n} / \mathbb{P}^{n-1}$ has \mathbb{A}^{1}-degree $\operatorname{deg}^{\mathbb{A}^{1}}(f) \in G W(k)$ defined by

$$
\operatorname{deg}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}(f)
$$

where y is a regular value of f and $\operatorname{deg}_{x}(f)$ is the local deg at x.
Local degree: in local coordinates about x, f is a map
$\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $J=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ and

$$
\operatorname{deg}_{x}(f)= \begin{cases}+1, & J(x)>0 \\ -1, & J(x)<0\end{cases}
$$

\mathbb{A}^{1}-topological degree

A map $f: \mathbb{P}^{n} / \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n} / \mathbb{P}^{n-1}$ has \mathbb{A}^{1}-degree $\operatorname{deg}^{\mathbb{A}^{1}}(f) \in G W(k)$ defined by

$$
\operatorname{deg}^{\mathbb{A}^{1}}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)
$$

where f is étale at x and $\operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)$ is the \mathbb{A}^{1}-local degree at x.
Local degree: in local coordinates about x, f is a map $\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $J=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ and

$$
\operatorname{deg}_{x}(f)= \begin{cases}+1, & J(x)>0 \\ -1, & J(x)<0\end{cases}
$$

\mathbb{A}^{1}-topological degree

A map $f: \mathbb{P}^{n} / \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n} / \mathbb{P}^{n-1}$ has \mathbb{A}^{1}-degree $\operatorname{deg}^{\mathbb{A}^{1}}(f) \in G W(k)$ defined by

$$
\operatorname{deg}^{\mathbb{A}^{1}}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)
$$

where f is étale at x and $\operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)$ is the \mathbb{A}^{1}-local degree at x.
\mathbb{A}^{1}-local degree: in Nisnevich local coordinates about x, f is a map
$\left(f_{0}, \ldots, f_{n}\right): \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ with $J=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ and

$$
\operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)=\langle J(x)\rangle \in G W(k)
$$

\mathbb{A}^{1}-topological degree

A map $f: \mathbb{P}^{n} / \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n} / \mathbb{P}^{n-1}$ has \mathbb{A}^{1}-degree $\operatorname{deg}^{\mathbb{A}^{1}}(f) \in G W(k)$ defined by

$$
\operatorname{deg}^{\mathbb{A}^{1}}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)
$$

where f is étale at x and $\operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)$ is the \mathbb{A}^{1}-local degree at x.
\mathbb{A}^{1}-local degree: in Nisnevich local coordinates about x, f is a map $\left(f_{0}, \ldots, f_{n}\right): \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ with $J=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ and

$$
\operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)=\langle J(x)\rangle \in G W(k) \quad \text { if } k(x)=k
$$

\mathbb{A}^{1}-topological degree

A map $f: \mathbb{P}^{n} / \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n} / \mathbb{P}^{n-1}$ has \mathbb{A}^{1}-degree $\operatorname{deg}^{\mathbb{A}^{1}}(f) \in G W(k)$ defined by

$$
\operatorname{deg}^{\mathbb{A}^{1}}(f)=\sum_{f(x)=y} \operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)
$$

where f is étale at x and $\operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)$ is the \mathbb{A}^{1}-local degree at x.
\mathbb{A}^{1}-local degree: in Nisnevich local coordinates about x, f is a map $\left(f_{0}, \ldots, f_{n}\right): \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ with $J=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$ and

$$
\operatorname{deg}_{x}^{\mathbb{A}^{1}}(f)=\operatorname{Tr}_{k(x) / k}\langle J(x)\rangle \in G W(k) \quad \text { in general. }
$$

\mathbb{A}^{1}-topological degree

This gives us a way of constructing classes in $G W(k)$:

$$
f: \mathbb{P}^{n} / \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n} / \mathbb{P}^{n-1} \quad \leadsto \quad \operatorname{deg}^{\mathbb{A}^{1}}(f) \in G W(k) .
$$

Next: turn an enumerative problem into such a map f.

Outline of the talk

- Introduction
- The Grothendieck-Witt ring
- \mathbb{A}^{1}-local degree
- \mathbb{A}^{1}-Euler classes of vector bundles
- Non-oriented enumerative problems

Enumerative problems and Euler classes

Many enumerative problems can be solved by computing the Euler class $e(E)$ of a vector bundle $E \rightarrow X$.

Enumerative problems and Euler classes

Many enumerative problems can be solved by computing the Euler class $e(E)$ of a vector bundle $E \rightarrow X$.

Example (Lines on a smooth cubic, revisited)

View our cubic as $S=\{F=0\} \subseteq \mathbb{P}^{3}$.
Lines in \mathbb{P}^{3} are parametrized by the Grassmannian $\operatorname{Gr}(2,4)$.
There is a rank 6 vector bundle $E \rightarrow \operatorname{Gr}(2,4)$ such that

$$
E_{\ell}=\{\text { homogeneous cubic forms on } \ell\} .
$$

There is also a section $\sigma_{F}: \operatorname{Gr}(2,4) \rightarrow E,\left.\ell \mapsto F\right|_{\ell}$, so that

$$
\left\{\text { zeroes of } \sigma_{F}\right\}=\left\{\text { lines } \ell \subset \mathbb{P}^{3} \text { lying on } S\right\} .
$$

Over \mathbb{C}, the Euler class $e\left(E, \sigma_{F}\right) \in H^{8}(\operatorname{Gr}(2,4) ; \mathbb{Z}) \cong \mathbb{Z}$ is 27 .

Enumerative problems and Euler classes

Many enumerative problems can be solved by computing the Euler class $e(E)$ of a vector bundle $E \rightarrow X$.

Example (Lines on a smooth cubic, revisited)

View our cubic as $S=\{F=0\} \subseteq \mathbb{P}^{3}$.
Lines in \mathbb{P}^{3} are parametrized by the Grassmannian $\operatorname{Gr}(2,4)$.
There is a rank 6 vector bundle $E \rightarrow \operatorname{Gr}(2,4)$ such that

$$
E_{\ell}=\{\text { homogeneous cubic forms on } \ell\} .
$$

There is also a section $\sigma_{F}: \operatorname{Gr}(2,4) \rightarrow E,\left.\ell \mapsto F\right|_{\ell}$, so that

$$
\left\{\text { zeroes of } \sigma_{F}\right\}=\left\{\text { lines } \ell \subset \mathbb{P}^{3} \text { lying on } S\right\} .
$$

Over \mathbb{C}, the Euler class $e\left(E, \sigma_{F}\right) \in H^{8}(\operatorname{Gr}(2,4) ; \mathbb{Z}) \cong \mathbb{Z}$ is 27 . *** This does not depend on $\sigma_{F}{ }^{* * *}$

Enumerative problems and Euler classes

Recall: For an oriented rank r vector bundle $E \rightarrow X$ with section $\sigma \in H^{0}(X, E)$, the topological Euler class $e(E, \sigma)$ is a characteristic class in $H^{r}(X ; \mathbb{Z})$.

Enumerative problems and Euler classes

Recall: For an oriented rank r vector bundle $E \rightarrow X$ with section $\sigma \in H^{0}(X, E)$, the topological Euler class $e(E, \sigma)$ is a characteristic class in $H^{r}(X ; \mathbb{Z})$.

When $r=\operatorname{dim} X, H^{r}(X ; \mathbb{Z}) \cong \mathbb{Z}$ and $e(E, \sigma)$ can be computed by

$$
e(E, \sigma)=\sum_{\sigma(x)=0} \operatorname{ind}_{x}(\sigma)
$$

where $\operatorname{ind}_{x}(\sigma)$ is the local index of σ at x :

- in local coordinates around x, σ looks like a map $\mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$
- $\operatorname{ind}_{x}(\sigma)$ is the degree of the bottom map

$$
\begin{aligned}
& X /(X \backslash\{x\}) \longrightarrow E /(E \backslash\{\sigma(x)\}) \\
& \widehat{\jmath} \\
& S^{r} \cong \mathbb{R}^{r} /\left(\mathbb{R}^{r} \backslash\{0\}\right) \longrightarrow \mathbb{R}^{r} /\left(\mathbb{R}^{r} \backslash\{0\}\right) \cong S^{r}
\end{aligned}
$$

\mathbb{A}^{1}-Euler classes

For an oriented rank r vector bundle $E \rightarrow X$ with section $\sigma \in H^{0}(X, E)$, the \mathbb{A}^{1}-Euler class $e(E, \sigma)$ is a class in $\widetilde{C H}^{r}\left(X, \operatorname{det} E^{\vee}\right)$.

When $r=\operatorname{dim} X, H^{r}(X ; \mathbb{Z}) \cong \mathbb{Z}$ and $e(E, \sigma)$ can be computed by

$$
e(E, \sigma)=\sum_{\sigma(x)=0} \operatorname{ind}_{x}(\sigma)
$$

where $\operatorname{ind}_{x}(\sigma)$ is the local index of σ at x :

- in local coordinates around x, σ looks like a map $\mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$
- $\operatorname{ind}_{x}(\sigma)$ is the degree of the bottom map

$$
\begin{aligned}
& X /(X \backslash\{x\}) \longrightarrow E /(E \backslash\{\sigma(x)\}) \\
& \uparrow \quad \uparrow \\
& S^{r} \cong \mathbb{R}^{r} /\left(\mathbb{R}^{r} \backslash\{0\}\right) \longrightarrow \mathbb{R}^{r} /\left(\mathbb{R}^{r} \backslash\{0\}\right) \cong S^{r}
\end{aligned}
$$

\mathbb{A}^{1}-Euler classes

For an oriented rank r vector bundle $E \rightarrow X$ with section $\sigma \in H^{0}(X, E)$, the \mathbb{A}^{1}-Euler class $e(E, \sigma)$ is a class in $\widetilde{C H}^{r}\left(X, \operatorname{det} E^{\vee}\right)$.

When $r=\operatorname{dim} X, \widetilde{C H}^{r}\left(X, \operatorname{det} E^{\vee}\right) \cong \widetilde{C H}^{0}(k)=G W(k)$ and $e(E, \sigma)$ can be computed by

$$
e(E, \sigma)=\sum_{\sigma(x)=0} \operatorname{ind}_{x}(\sigma)
$$

where $\operatorname{ind}_{x}(\sigma)$ is the local index of σ at x :

- in local coordinates around x, σ looks like a map $\mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$
- $\operatorname{ind}_{x}(\sigma)$ is the degree of the bottom map

$$
\begin{gathered}
X /(X \backslash\{x\}) \longrightarrow E /(E \backslash\{\sigma(x)\}) \\
\widehat{\jmath} \text { 〇 } \\
S^{r} \cong \mathbb{R}^{r} /\left(\mathbb{R}^{r} \backslash\{0\}\right) \longrightarrow \mathbb{R}^{r} /\left(\mathbb{R}^{r} \backslash\{0\}\right) \cong S^{r}
\end{gathered}
$$

\mathbb{A}^{1}-Euler classes

For an oriented rank r vector bundle $E \rightarrow X$ with section $\sigma \in H^{0}(X, E)$, the \mathbb{A}^{1}-Euler class $e(E, \sigma)$ is a class in $\widetilde{C H}^{r}\left(X, \operatorname{det} E^{\vee}\right)$.

When $r=\operatorname{dim} X, \widetilde{C H}^{r}\left(X, \operatorname{det} E^{\vee}\right) \cong \widetilde{C H}^{0}(k)=G W(k)$ and $e(E, \sigma)$ can be computed by

$$
e(E, \sigma)=\sum_{\sigma(x)=0} \operatorname{ind}_{x}(\sigma)
$$

where $\operatorname{ind}_{x}(\sigma)$ is the \mathbb{A}^{1}-local index of σ at x :

- in Nisnevich local coordinates around x, σ looks like $\mathbb{A}^{r} \rightarrow \mathbb{A}^{r}$
- $\operatorname{ind}_{x}(\sigma)$ is the \mathbb{A}^{1}-degree of the bottom map

$$
\begin{aligned}
& X /(X \backslash\{x\}) \longrightarrow E /(E \backslash\{\sigma(x)\}) \\
& \uparrow \\
& \mathbb{P}^{r} / \mathbb{P}^{r-1} \cong \mathbb{A}^{r} /\left(\mathbb{A}^{r} \backslash\{0\}\right) \longrightarrow \mathbb{A}^{r} /\left(\mathbb{A}^{r} \backslash\{0\}\right) \cong \mathbb{P}^{r} / \mathbb{P}^{r-1}
\end{aligned}
$$

Outline of the talk

- Introduction
- The Grothendieck-Witt ring
- \mathbb{A}^{1}-local degree
- \mathbb{A}^{1}-Euler classes of vector bundles
- Non-oriented enumerative problems

Orientability

For $e(E, \sigma)$ to be defined in $G W(k)$ and to be independent of σ (also, choices of coordinates, etc.), E must be oriented.

This is equivalent to $\operatorname{det} E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \rightarrow X$. An orientation of E is a choice of section $s \in H^{0}\left(X, \operatorname{det} E^{\vee}\right)$ which is a square.

Orientability

For $e(E, \sigma)$ to be defined in $G W(k)$ and to be independent of σ (also, choices of coordinates, etc.), E must be oriented.

This is equivalent to $\operatorname{det} E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \rightarrow X$. An orientation of E is a choice of section $s \in H^{0}\left(X, \operatorname{det} E^{\vee}\right)$ which is a square.

Unfortunately, many enumerative problems do not produce orientable vector bundles, e.g.

- Bitangents to a smooth plane quartic
- Some cases of Bézout's Theorem
- Lines meeting $2 n-2$ general codim. 2 hyperplanes in \mathbb{P}^{n} for n even
- \mathbb{A}^{1}-degrees of some covers of modular curves

Orientability

For $e(E, \sigma)$ to be defined in $G W(k)$ and to be independent of σ (also, choices of coordinates, etc.), E must be oriented.

This is equivalent to $\operatorname{det} E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \rightarrow X$. An orientation of E is a choice of section $s \in H^{0}\left(X, \operatorname{det} E^{\vee}\right)$ which is a square.

Unfortunately, many enumerative problems do not produce orientable vector bundles, e.g.

- Bitangents to a smooth plane quartic (Larson-Vogt '19)
- Some cases of Bézout's Theorem
- Lines meeting $2 n-2$ general codim. 2 hyperplanes in \mathbb{P}^{n} for n even
- \mathbb{A}^{1}-degrees of some covers of modular curves

Orientability

For $e(E, \sigma)$ to be defined in $G W(k)$ and to be independent of σ (also, choices of coordinates, etc.), E must be oriented.

This is equivalent to $\operatorname{det} E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \rightarrow X$. An orientation of E is a choice of section $s \in H^{0}\left(X, \operatorname{det} E^{\vee}\right)$ which is a square.

Unfortunately, many enumerative problems do not produce orientable vector bundles, e.g.

- Bitangents to a smooth plane quartic (Larson-Vogt '19)
- Some cases of Bézout's Theorem (McKean '20)
- Lines meeting $2 n-2$ general codim. 2 hyperplanes in \mathbb{P}^{n} for n even
- \mathbb{A}^{1}-degrees of some covers of modular curves

Orientability

For $e(E, \sigma)$ to be defined in $G W(k)$ and to be independent of σ (also, choices of coordinates, etc.), E must be oriented.

This is equivalent to $\operatorname{det} E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \rightarrow X$. An orientation of E is a choice of section $s \in H^{0}\left(X, \operatorname{det} E^{\vee}\right)$ which is a square.

Unfortunately, many enumerative problems do not produce orientable vector bundles, e.g.

- Bitangents to a smooth plane quartic (Larson-Vogt '19)
- Some cases of Bézout's Theorem (McKean '20)
- Lines meeting $2 n-2$ general codim. 2 hyperplanes in \mathbb{P}^{n} for n even (K.-Taylor '20, for $n=4$)
- \mathbb{A}^{1}-degrees of some covers of modular curves

Orientability

For $e(E, \sigma)$ to be defined in $G W(k)$ and to be independent of σ (also, choices of coordinates, etc.), E must be oriented.

This is equivalent to $\operatorname{det} E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \rightarrow X$. An orientation of E is a choice of section $s \in H^{0}\left(X, \operatorname{det} E^{\vee}\right)$ which is a square.

Unfortunately, many enumerative problems do not produce orientable vector bundles, e.g.

- Bitangents to a smooth plane quartic (Larson-Vogt '19)
- Some cases of Bézout's Theorem (McKean ‘20)
- Lines meeting $2 n-2$ general codim. 2 hyperplanes in \mathbb{P}^{n} for n even (K.-Taylor '20, for $n=4$)
- \mathbb{A}^{1}-degrees of some covers of modular curves (Kim-Park '21, only in the oriented case)

Non-orientable enumerative problems

Suppose (E, σ) is a vector bundle and section over X that represents a non-orientable enumerative problem, so $L=\operatorname{det} E^{\vee}$ is not a square.

Non-orientable enumerative problems

Suppose (E, σ) is a vector bundle and section over X that represents a non-orientable enumerative problem, so $L=\operatorname{det} E^{\vee}$ is not a square.

Naive solution: Take a double cover $Y \xrightarrow{\pi} X$, pull (E, σ) back to $\left(\pi^{*} E, \pi^{*} \sigma\right)$ and compute $e\left(\pi^{*} E, \pi^{*} \sigma\right)$.

$$
\begin{aligned}
Y & \longrightarrow X \\
\text { orientable } \quad\left(\pi^{*} E, \pi^{*} \sigma\right) & \longleftrightarrow(E, \sigma) \quad \text { non-orientable }
\end{aligned}
$$

In general, this depends on π (and possibly σ, the orientation, etc.)

Non-orientable enumerative problems

Suppose (E, σ) is a vector bundle and section over X that represents a non-orientable enumerative problem, so $L=\operatorname{det} E^{\vee}$ is not a square.

Our solution: Let $\mathcal{X}=\sqrt{(L, s) / X}$ be the root stack of X with respect to L and an appropriate section $s \in H^{0}(X, L)$.

$$
\begin{aligned}
\mathcal{X} & \longrightarrow X \\
\text { orientable } \quad(\mathcal{E}, \tau) & \longleftrightarrow(E, \sigma) \quad \text { non-orientable }
\end{aligned}
$$

Theorem

There is a well-defined Euler class $e(\mathcal{E}, \tau) \in G W(k)$ which is independent of s and all choices of coordinates.

Non-orientable enumerative problems

Suppose (E, σ) is a vector bundle and section over X that represents a non-orientable enumerative problem, so $L=\operatorname{det} E^{\vee}$ is not a square.

Our solution: Let $\mathcal{X}=\sqrt{(L, s) / X}$ be the root stack of X with respect to L and an appropriate section $s \in H^{0}(X, L)$.

$$
\begin{aligned}
\mathcal{X} & \longrightarrow X \\
\text { orientable } \quad(\mathcal{E}, \tau) & \longleftrightarrow(E, \sigma) \quad \text { non-orientable }
\end{aligned}
$$

Theorem

There is a well-defined Euler class $e(\mathcal{E}, \tau) \in G W(k)$ which is independent of s and all choices of coordinates.

Further, $e(\mathcal{E}, \tau)$ is often independent of τ, producing an enriched count of the given enumerative problem in $G W(k)$.

Non-orientable enumerative problems

Example (Lines and planes in \mathbb{P}^{4})

(K.-Taylor '20) There are $3\langle\mathbf{1}\rangle+\mathbf{2}\langle-\mathbf{1}\rangle$ lines meeting 6 general 2 -planes in \mathbb{P}^{4}.

Non-orientable enumerative problems

Example (Lines and planes in \mathbb{P}^{4})

(K.-Taylor '20) There are $\mathbf{3}\langle\mathbf{1}\rangle+\mathbf{2}\langle-\mathbf{1}\rangle$ lines meeting 6 general 2 -planes in \mathbb{P}^{4}.

Further:

Conjecture (K.-Taylor '20)
For n even, there are

$$
\frac{\mathbf{c}(\mathbf{n}-1)+\mathbf{i}(\mathbf{n})}{2}\langle\mathbf{1}\rangle+\frac{\mathbf{c}(\mathbf{n}-1)-\mathbf{i}(\mathbf{n})}{2}\langle-1\rangle
$$

lines meeting $2 n-2$ codimension 2 hyperplanes in \mathbb{P}^{n}.

Thank you!

