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Introduction

Goal of A1-enumerative geometry: count geometric objects over a
field k (char k 6= 2) when the count is fixed over k̄.

This can be done using Morel and Voevodsky’s A1-homotopy theory
(more on that later).

“Enriched counts” take values in the Grothendieck–Witt ring of
quadratic forms:

GW (k) = group completion of {nondegen. symm. bilinear forms /k}.
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Introduction

Example (Lines on a smooth cubic)

The Cayley–Salmon Theorem says that for a smooth cubic surface
X/C, there are exactly 27 lines on X.

Over other fields, this count is not fixed, e.g. over R, there can be 3, 7,
15 or 27 lines on X. However, there is a “signed count” which is fixed:

#real hyperbolic lines on X −#real elliptic lines on X = 3.
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Introduction

Example (Lines on a smooth cubic)

The Cayley–Salmon Theorem says that for a smooth cubic surface
X/C, there are exactly 27 lines on X.

(Kass–Wickelgren ‘17) The lines on a smooth cubic surface X/k can
be enumerated in GW (k) by the class

15〈1〉+ 12〈−1〉

where 〈a〉 is the class of the quadratic form q(x) = ax2.
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Introduction

Example (Lines in P3)

Over C, there are 2 lines meeting 4 general lines in P3.

(Srinivasan–Wickelgren ‘21) The lines meeting 4 general lines in P3

can be enumerated in GW (k) by the class

〈1〉+ 〈−1〉



Introduction The Grothendieck–Witt ring A1 -local degree A1 -Euler class A1 -Euler class

Introduction

Example (Lines in Pn)

More generally, over C there are c(n− 1) lines intersecting 2n− 2
general codimension 2 hyperplanes in Pn when n is odd:

c(n− 1) =
(2n− 2)!

n!(n− 1)!
Catalan numbers

(Srinivasan–Wickelgren ‘21) The lines meeting 2n− 2 general
codimension 2 hyperplanes in Pn, n odd, can be enumerated in
GW (k) by the class

c(n− 1)

2
〈1〉+ 〈−1〉
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Introduction

Other enumerative problems that have solutions in GW (k) include:
(Larson–Vogt ‘19) 16〈1〉+ 12〈−1〉 bitangents to a smooth plane
quartic

(McKean ‘20) Arithmetic Bézout’s Theorem: the intersection of n
general hypersurfaces in Pn of degrees d1, . . . , dn is enumerated
by d1···dn

2 (〈1〉+ 〈−1〉)
(Pauli ‘20) A1-enumerative version of Milnor numbers

(Brazelton–McKean–Pauli ‘21) A1-Euler characteristics of
Grassmannians

(Kim–Park ‘21) A1-degrees of covers of modular curves

(Bachmann–Wickelgren ‘21) 160839〈1〉+ 160650〈−1〉
dimension 3 hyperplanes in a 7-dimensional cubic hypersurface
(and generalizations)
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Introduction

These results∗ require an orientation on the vector bundle used to
enumerate the geometric objects.

Libby Taylor and I extend these techniques to non-orientable vector
bundles (and associated non-orientable enumerative problems) using
algebraic stacks.
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The Grothendieck–Witt ring

Let k be a field of characteristic 6= 2. The Grothendieck–Witt ring of
k is the group completion GW (k) of

{nondeg. symm. bilinear forms on k}/iso. under ⊕,⊗.

An isomorphism class is represented by a bilinear form b : V × V → k
or equivalently a quadratic form f(x) = b(x, x), e.g.

(x, y) 7→ x · y ←→ q(x) = ||x||2
(x, y) 7→ x1y1 − x2y2 ←→ q(x) = x21 − x22
(x, y) 7→ x1y1 − x2y2 − x3y3 ←→ q(x) = x21 − x22 − x23
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The Grothendieck–Witt ring

Let k be a field of characteristic 6= 2. The Grothendieck–Witt ring of
k is the group completion GW (k) of

{nondeg. symm. bilinear forms on k}/iso. under ⊕,⊗.

GW (k) is generated by symbols 〈a〉 for a ∈ k×/k×2, denoting the
iso. class of the rank 1 bilinear form (x, y) 7→ axy, satisfying:

1 〈a〉〈b〉 = 〈ab〉
2 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈ab(a+ b)〉
3 〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉, the hyperbolic form x2 − y2
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The Grothendieck–Witt ring

Example

For k = C, rank gives an isomorphism

GW (C) −→ Z
〈a〉 7−→ 1
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The Grothendieck–Witt ring

Example

For k = R, rank and signature give an isomorphism

GW (R) −→ Z× Z

〈a〉 7−→

{
(1, 1), a > 0

(1,−1), a < 0
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The Grothendieck–Witt ring

Example

For k = Fq, rank and discriminant give an isomorphism

GW (Fq) −→ Z× F×q /F×2q
〈a〉 7−→ (1, a)
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The Grothendieck–Witt ring

Key idea: geometric configurations over k can be enumerated by
classes in GW (k) and classical solutions (e.g. over C or R) can be
recovered by taking invariants of these classes (e.g. rank, signature,
discriminant).

Example

The 15〈1〉+ 12〈−1〉 lines on a smooth cubic surface become
(rank) 15 + 12 = 27 over k = C

(sign.) 15− 12 = 3 over k = R

(disc.) 15 disc〈1〉+ 12 disc〈−1〉 ≡ 0 (mod 2) over k = Fp2

etc.
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Topological degree

Recall: a continuous map f : Sn → Sn has degree deg(f) ∈ Z
defined by

deg(f) =
∑

f(x)=y

degx(f)

where y is a regular value of f and degx(f) is the local degree at x.

Local degree: in local coordinates about x, f determines a map
(f1, . . . , fn) : Rn → Rn with J = det

(
∂fi
∂xj

)
and

degx(f) =

{
+1, J(x) > 0

−1, J(x) < 0
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Topological degree

Recall: a continuous map f : Sn → Sn has degree deg(f) ∈ Z
defined by

deg(f) =
∑

f(x)=y

degx(f)

where y is a regular value of f and degx(f) is the local degree at x.

We can view this as a homomorphism deg : [Sn, Sn]→ Z.
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A1-topological degree

Observation: as a real algebraic variety, Sn ∼= PnR/P
n−1
R .

Over arbitrary k, Morel (‘06) constructed a map

degA1

: [Pn/Pn−1,Pn/Pn−1]A1 −→ GW (k)

using A1-homotopy theory.

Brief summary: cohomology functors on Smk are represented by
objects in a category SH(k) and we have

[Pn/Pn−1,Pn/Pn−1]A1 = EndSH(k)(Pn/Pn−1) and GW (k) ∼= C̃H
0
(k)

for the functors [−,Pn/Pn−1]A1 and C̃H
0
(−) ∼= KMW

0 (−).
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A1-topological degree

A map f : Pn/Pn−1 → Pn/Pn−1 has A1-degree degA1

(f) ∈ GW (k)
defined by

deg(f) =
∑

f(x)=y

degx(f)

where y is a regular value of f and degx(f) is the local deg at x.

Local degree: in local coordinates about x, f is a map
(f1, . . . , fn) : Rn → Rn with J = det

(
∂fi
∂xj

)
and

degx(f) =

{
+1, J(x) > 0

−1, J(x) < 0
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A1-topological degree

A map f : Pn/Pn−1 → Pn/Pn−1 has A1-degree degA1

(f) ∈ GW (k)
defined by

degA1

(f) =
∑

f(x)=y

degA1

x (f)

where f is étale at x and degA1

x (f) is the A1-local degree at x.

Local degree: in local coordinates about x, f is a map
(f1, . . . , fn) : Rn → Rn with J = det

(
∂fi
∂xj

)
and

degx(f) =

{
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A1-topological degree

A map f : Pn/Pn−1 → Pn/Pn−1 has A1-degree degA1

(f) ∈ GW (k)
defined by

degA1

(f) =
∑

f(x)=y

degA1

x (f)

where f is étale at x and degA1

x (f) is the A1-local degree at x.

A1-local degree: in Nisnevich local coordinates about x, f is a map
(f0, . . . , fn) : An → An with J = det

(
∂fi
∂xj

)
and

degA1

x (f) = 〈J(x)〉 ∈ GW (k)
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A1-topological degree

A map f : Pn/Pn−1 → Pn/Pn−1 has A1-degree degA1

(f) ∈ GW (k)
defined by

degA1

(f) =
∑

f(x)=y

degA1

x (f)

where f is étale at x and degA1

x (f) is the A1-local degree at x.

A1-local degree: in Nisnevich local coordinates about x, f is a map
(f0, . . . , fn) : An → An with J = det

(
∂fi
∂xj

)
and

degA1

x (f) = 〈J(x)〉 ∈ GW (k) if k(x) = k.
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A1-topological degree

A map f : Pn/Pn−1 → Pn/Pn−1 has A1-degree degA1

(f) ∈ GW (k)
defined by

degA1

(f) =
∑

f(x)=y

degA1

x (f)

where f is étale at x and degA1

x (f) is the A1-local degree at x.

A1-local degree: in Nisnevich local coordinates about x, f is a map
(f0, . . . , fn) : An → An with J = det

(
∂fi
∂xj

)
and

degA1

x (f) = Trk(x)/k〈J(x)〉 ∈ GW (k) in general.
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A1-topological degree

This gives us a way of constructing classes in GW (k):

f : Pn/Pn−1 → Pn/Pn−1  degA1

(f) ∈ GW (k).

Next: turn an enumerative problem into such a map f .
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Enumerative problems and Euler classes

Many enumerative problems can be solved by computing the Euler
class e(E) of a vector bundle E → X.

Example (Lines on a smooth cubic, revisited)

View our cubic as S = {F = 0} ⊆ P3.

Lines in P3 are parametrized by the Grassmannian Gr(2, 4).

There is a rank 6 vector bundle E → Gr(2, 4) such that

E` = {homogeneous cubic forms on `}.

There is also a section σF : Gr(2, 4)→ E, ` 7→ F |`, so that

{zeroes of σF } = {lines ` ⊂ P3 lying on S}.

Over C, the Euler class e(E, σF ) ∈ H8(Gr(2, 4);Z) ∼= Z is 27.
***This does not depend on σF ***
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Enumerative problems and Euler classes

Recall: For an oriented rank r vector bundle E → X with section
σ ∈ H0(X,E), the topological Euler class e(E, σ) is a characteristic
class in Hr(X;Z).

When r = dimX, Hr(X;Z) ∼= Z and e(E, σ) can be computed by

e(E, σ) =
∑

σ(x)=0

indx(σ)

where indx(σ) is the local index of σ at x:
in local coordinates around x, σ looks like a map Rr → Rr

indx(σ) is the degree of the bottom map

X/(X r {x}) E/(E r {σ(x)})

Rr/(Rr r {0}) Rr/(Rr r {0})Sr ∼= ∼= Sr
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A1-Euler classes

For an oriented rank r vector bundle E → X with section
σ ∈ H0(X,E), the A1-Euler class e(E, σ) is a class in
C̃H

r
(X,detE∨).

When r = dimX, Hr(X;Z) ∼= Z and e(E, σ) can be computed by

e(E, σ) =
∑

σ(x)=0

indx(σ)

where indx(σ) is the local index of σ at x:
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A1-Euler classes

For an oriented rank r vector bundle E → X with section
σ ∈ H0(X,E), the A1-Euler class e(E, σ) is a class in
C̃H

r
(X,detE∨).

When r = dimX, C̃H
r
(X,detE∨) ∼= C̃H

0
(k) = GW (k) and e(E, σ)

can be computed by

e(E, σ) =
∑

σ(x)=0

indx(σ)

where indx(σ) is the local index of σ at x:
in local coordinates around x, σ looks like a map Rr → Rr

indx(σ) is the degree of the bottom map

X/(X r {x}) E/(E r {σ(x)})

Rr/(Rr r {0}) Rr/(Rr r {0})Sr ∼= ∼= Sr
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A1-Euler classes

For an oriented rank r vector bundle E → X with section
σ ∈ H0(X,E), the A1-Euler class e(E, σ) is a class in
C̃H

r
(X,detE∨).

When r = dimX, C̃H
r
(X,detE∨) ∼= C̃H

0
(k) = GW (k) and e(E, σ)

can be computed by

e(E, σ) =
∑

σ(x)=0

indx(σ)

where indx(σ) is the A1-local index of σ at x:
in Nisnevich local coordinates around x, σ looks like Ar → Ar

indx(σ) is the A1-degree of the bottom map

X/(X r {x}) E/(E r {σ(x)})

Ar/(Ar r {0}) Ar/(Ar r {0})Pr/Pr−1 ∼= ∼= Pr/Pr−1
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Orientability

For e(E, σ) to be defined in GW (k) and to be independent of σ (also,
choices of coordinates, etc.), E must be oriented.

This is equivalent to detE∨ ∼= L⊗2 for some line bundle L→ X. An
orientation of E is a choice of section s ∈ H0(X,detE∨) which is a
square.

Unfortunately, many enumerative problems do not produce orientable
vector bundles, e.g.

Bitangents to a smooth plane quartic
Some cases of Bézout’s Theorem
Lines meeting 2n− 2 general codim. 2 hyperplanes in Pn for n
even
A1-degrees of some covers of modular curves
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Orientability

For e(E, σ) to be defined in GW (k) and to be independent of σ (also,
choices of coordinates, etc.), E must be oriented.

This is equivalent to detE∨ ∼= L⊗2 for some line bundle L→ X. An
orientation of E is a choice of section s ∈ H0(X,detE∨) which is a
square.

Unfortunately, many enumerative problems do not produce orientable
vector bundles, e.g.

Bitangents to a smooth plane quartic (Larson–Vogt ‘19)
Some cases of Bézout’s Theorem (McKean ‘20)
Lines meeting 2n− 2 general codim. 2 hyperplanes in Pn for n
even (K.–Taylor ‘20, for n = 4)
A1-degrees of some covers of modular curves
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Orientability

For e(E, σ) to be defined in GW (k) and to be independent of σ (also,
choices of coordinates, etc.), E must be oriented.

This is equivalent to detE∨ ∼= L⊗2 for some line bundle L→ X. An
orientation of E is a choice of section s ∈ H0(X,detE∨) which is a
square.

Unfortunately, many enumerative problems do not produce orientable
vector bundles, e.g.

Bitangents to a smooth plane quartic (Larson–Vogt ‘19)
Some cases of Bézout’s Theorem (McKean ‘20)
Lines meeting 2n− 2 general codim. 2 hyperplanes in Pn for n
even (K.–Taylor ‘20, for n = 4)
A1-degrees of some covers of modular curves (Kim–Park ‘21,
only in the oriented case)
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Non-orientable enumerative problems

Suppose (E, σ) is a vector bundle and section over X that represents
a non-orientable enumerative problem, so L = detE∨ is not a square.

Naive solution: Take a double cover Y π−→ X, pull (E, σ) back to
(π∗E, π∗σ) and compute e(π∗E, π∗σ).

Y −→ X

orientable (π∗E, π∗σ) 7−→(E, σ) non-orientable

In general, this depends on π (and possibly σ, the orientation, etc.)
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Non-orientable enumerative problems

Suppose (E, σ) is a vector bundle and section over X that represents
a non-orientable enumerative problem, so L = detE∨ is not a square.

Our solution: Let X =
√

(L, s)/X be the root stack of X with
respect to L and an appropriate section s ∈ H0(X,L).

X −→ X

orientable (E , τ) 7−→(E, σ) non-orientable

Theorem

There is a well-defined Euler class e(E , τ) ∈ GW (k) which is
independent of s and all choices of coordinates.

Further, e(E , τ) is often independent of τ , producing an enriched
count of the given enumerative problem in GW (k).
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(L, s)/X be the root stack of X with
respect to L and an appropriate section s ∈ H0(X,L).

X −→ X

orientable (E , τ) 7−→(E, σ) non-orientable

Theorem

There is a well-defined Euler class e(E , τ) ∈ GW (k) which is
independent of s and all choices of coordinates.

Further, e(E , τ) is often independent of τ , producing an enriched
count of the given enumerative problem in GW (k).
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Non-orientable enumerative problems

Example (Lines and planes in P4)

(K.–Taylor ‘20) There are 3〈1〉+ 2〈−1〉 lines meeting 6 general
2-planes in P4.

Further:

Conjecture (K.–Taylor ‘20)

For n even, there are

c(n− 1) + i(n)

2
〈1〉+

c(n− 1)− i(n)

2
〈−1〉

lines meeting 2n− 2 codimension 2 hyperplanes in Pn.
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Non-orientable enumerative problems

Example (Lines and planes in P4)

(K.–Taylor ‘20) There are 3〈1〉+ 2〈−1〉 lines meeting 6 general
2-planes in P4.

Further:

Conjecture (K.–Taylor ‘20)

For n even, there are

c(n− 1) + i(n)

2
〈1〉+

c(n− 1)− i(n)

2
〈−1〉

lines meeting 2n− 2 codimension 2 hyperplanes in Pn.
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Thank you!
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