Non-orientable enumerative problems in \mathbb{A}^1 -homotopy theory

Andrew J. Kobin

Algebra & Number Theory Seminar

November 16, 2021

Joint work with Libby Taylor

Introduction •••••••	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree 00000000000	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000
Introduction				

Goal of \mathbb{A}^1 -enumerative geometry: count geometric objects over a field k (char $k \neq 2$) when the count is fixed over \overline{k} .

This can be done using Morel and Voevodsky's \mathbb{A}^1 -homotopy theory (more on that later).

"Enriched counts" take values in the Grothendieck–Witt ring of quadratic forms:

GW(k) = group completion of {nondegen. symm. bilinear forms /k}.

Introduction	The Grothendieck–Witt ring	[⊥] -local degree	A ¹ -Euler class	A ¹ -Euler class
0000000		00000000000	000000	0000000000
Introduction				

Example (Lines on a smooth cubic)

The Cayley–Salmon Theorem says that for a smooth cubic surface X/\mathbb{C} , there are exactly 27 lines on X.

Over other fields, this count is not fixed, e.g. over \mathbb{R} , there can be 3, 7, 15 or 27 lines on *X*. However, there is a "signed count" which is fixed:

#real hyperbolic lines on X - #real elliptic lines on X = 3.

Introduction	The Grothendieck–Witt ring	 [⊥] -Euler class 000000	¹ -Euler class 0000000000
Introduction			

Example (Lines on a smooth cubic)

The Cayley–Salmon Theorem says that for a smooth cubic surface X/\mathbb{C} , there are exactly 27 lines on X.

(Kass–Wickelgren '17) The lines on a smooth cubic surface X/k can be enumerated in GW(k) by the class

```
\mathbf{15} \langle \mathbf{1} \rangle + \mathbf{12} \langle -\mathbf{1} \rangle
```

where $\langle a \rangle$ is the class of the quadratic form $q(x) = ax^2$.

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000
Introduction				

Example (Lines in \mathbb{P}^3)

Over \mathbb{C} , there are **2** lines meeting 4 general lines in \mathbb{P}^3 .

(Srinivasan–Wickelgren '21) The lines meeting 4 general lines in \mathbb{P}^3 can be enumerated in GW(k) by the class

 $\langle {f 1}
angle + \langle -{f 1}
angle$

Introduction 00000000	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree 00000000000	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class

Introduction

Example (Lines in \mathbb{P}^n)

More generally, over \mathbb{C} there are $\mathbf{c(n-1)}$ lines intersecting 2n-2 general codimension 2 hyperplanes in \mathbb{P}^n when n is odd:

$$c(n-1) = \frac{(2n-2)!}{n!(n-1)!}$$
Catalan numbers

(Srinivasan–Wickelgren '21) The lines meeting 2n - 2 general codimension 2 hyperplanes in \mathbb{P}^n , n odd, can be enumerated in GW(k) by the class

 $rac{{f c}({f n}-1)}{2}\langle 1
angle + \langle -1
angle$

Introduction 00000000	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000
Introduction				

Other enumerative problems that have solutions in GW(k) include:

- (Larson–Vogt '19) $16\langle 1\rangle + 12\langle -1\rangle$ bitangents to a smooth plane quartic
- (McKean '20) Arithmetic Bézout's Theorem: the intersection of n general hypersurfaces in Pⁿ of degrees d₁,..., d_n is enumerated by d₁...d_n (1) + (−1))
- (Pauli '20) \mathbb{A}^1 -enumerative version of Milnor numbers
- (Brazelton–McKean–Pauli '21) A¹-Euler characteristics of Grassmannians
- (Kim–Park '21) A¹-degrees of covers of modular curves
- (Bachmann–Wickelgren '21) 160839(1) + 160650(-1)dimension 3 hyperplanes in a 7-dimensional cubic hypersurface (and generalizations)

Introduction			
Introduction	The Grothendieck–Witt ring	 \mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000

These results* require an *orientation* on the vector bundle used to enumerate the geometric objects.

Libby Taylor and I extend these techniques to *non-orientable vector bundles* (and associated non-orientable enumerative problems) using algebraic stacks.

Mathematics > Algebraic Geometry

[Submitted on 14 Nov 2019 (v1), last revised 18 Aug 2020 (this version, v4)]

\mathbb{A}^1 -Local Degree via Stacks

Andrew Kobin, Libby Taylor

We extend results of Kass-Wickelgren to define an Euler class for a non-orientable (or non-relatively orientable) vector bundle on a smooth scheme, valued in the Grothendieck--Witt group of the ground field. We use a root stack construction to produce this Euler class and discuss its relation to other versions of an Euler class in A¹-homotopy theory. This allows one to apply Kass--Wickelgren's technique for arithmetic enrichments of enumerative geometry to a larger class of problems; as an example, we use our construction to give an arithmetic count of the number of lines meeting 6 planes in P⁴.

Introduction 0000000●	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree 00000000000	 \mathbb{A}^1 -Euler class 0000000000

Outline of the talk

- Introduction
- The Grothendieck–Witt ring
- $\bullet \ \mathbb{A}^1 \text{-local degree}$
- \mathbb{A}^1 -Euler classes of vector bundles
- Non-oriented enumerative problems

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	≜ ¹ -Euler class
00000000	●000000	00000000000	000000	0000000000

Outline of the talk

Introduction

• The Grothendieck–Witt ring

- $\bullet \ \mathbb{A}^1 \text{-local degree}$
- \mathbb{A}^1 -Euler classes of vector bundles
- Non-oriented enumerative problems

Introduction	The Grothendieck–Witt ring		A ¹ -Euler class	A ¹ -Euler class
00000000	O●OOOOO	∧ ¹ -local degree	000000	0000000000
The Groth	endieck–Witt ring			

Let *k* be a field of characteristic $\neq 2$. The **Grothendieck–Witt ring** of *k* is the group completion GW(k) of

{nondeg. symm. bilinear forms on k}/iso. under \oplus , \otimes .

An isomorphism class is represented by a bilinear form $b: V \times V \rightarrow k$ or equivalently a quadratic form f(x) = b(x, x), e.g.

$(x,y)\mapsto x\cdot y$	\longleftrightarrow	$q(x) = x ^2$
$(x,y)\mapsto x_1y_1-x_2y_2$	\longleftrightarrow	$q(x) = x_1^2 - x_2^2$
$(x,y) \mapsto x_1y_1 - x_2y_2 - x_3y_3$	\longleftrightarrow	$q(x) = x_1^2 - x_2^2 - x_3^2$

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	\mathbb{A}^1 -Euler class
00000000	OO●OOOO		000000	0000000000
The Groth	endieck–Witt ring			

Let *k* be a field of characteristic $\neq 2$. The **Grothendieck–Witt ring** of *k* is the group completion GW(k) of

{nondeg. symm. bilinear forms on k}/iso. under \oplus , \otimes .

GW(k) is generated by symbols $\langle a \rangle$ for $a \in k^{\times}/k^{\times 2}$, denoting the iso. class of the rank 1 bilinear form $(x, y) \mapsto axy$, satisfying:

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	\mathbb{A}^1 -Euler class
00000000	000●000		000000	0000000000

The Grothendieck–Witt ring

Example

For $k = \mathbb{C}$, *rank* gives an isomorphism

$$GW(\mathbb{C}) \longrightarrow \mathbb{Z}$$
$$\langle a \rangle \longmapsto 1$$

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000

The Grothendieck–Witt ring

Example

For $k = \mathbb{R}$, rank and signature give an isomorphism

(

$$GW(\mathbb{R}) \longrightarrow \mathbb{Z} \times \mathbb{Z}$$
$$\langle a \rangle \longmapsto \begin{cases} (1,1), & a > 0\\ (1,-1), & a < 0 \end{cases}$$

Introduction	The Grothendieck–Witt ring 00000●0	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000

The Grothendieck–Witt ring

Example

For $k = \mathbb{F}_q$, rank and discriminant give an isomorphism

$$GW(\mathbb{F}_q) \longrightarrow \mathbb{Z} \times \mathbb{F}_q^{\times} / \mathbb{F}_q^{\times 2}$$
$$\langle a \rangle \longmapsto (1, a)$$

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	\mathbb{A}^1 -Euler class
00000000	000000●		000000	0000000000
The Grothe	ndieck–Witt ring			

Key idea: geometric configurations over k can be enumerated by classes in GW(k) and classical solutions (e.g. over \mathbb{C} or \mathbb{R}) can be recovered by taking invariants of these classes (e.g. rank, signature, discriminant).

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	\mathbb{A}^1 -Euler class
00000000	000000●		000000	0000000000
The Groth	endieck–Witt ring			

Key idea: geometric configurations over k can be enumerated by classes in GW(k) and classical solutions (e.g. over \mathbb{C} or \mathbb{R}) can be recovered by taking invariants of these classes (e.g. rank, signature, discriminant).

Example

The $15\langle 1 \rangle + 12\langle -1 \rangle$ lines on a smooth cubic surface become

- (rank) 15 + 12 = 27 over $k = \mathbb{C}$
- (sign.) 15 12 = 3 over $k = \mathbb{R}$
- (disc.) $15 \operatorname{disc}\langle 1 \rangle + 12 \operatorname{disc}\langle -1 \rangle \equiv \mathbf{0} \pmod{\mathbf{2}}$ over $k = \mathbb{F}_{p^2}$

etc.

Introduction	The Grothendieck–Witt ring	. ¹ -local degree	\mathbb{A}^1 -Euler class	\mathbb{A}^1 -Euler class
00000000		●0000000000	000000	0000000000

Outline of the talk

- Introduction
- The Grothendieck–Witt ring
- \mathbb{A}^1 -local degree
- \mathbb{A}^1 -Euler classes of vector bundles
- Non-oriented enumerative problems

Introduction 00000000	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree 0000000000000000000000000000000000	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000
Topologica	l degree			

$$\deg(f) = \sum_{f(x)=y} \deg_x(f)$$

where y is a regular value of f and $\deg_x(f)$ is the *local degree* at x.

Introduction	The Grothendieck–Witt ring	A ¹ -local degree	A ¹ -Euler class	A ¹ -Euler class
00000000		O●OOOOOOOOO	000000	0000000000
Topologic	al degree			

$$\deg(f) = \sum_{f(x)=y} \deg_x(f)$$

where y is a regular value of f and $\deg_x(f)$ is the *local degree* at x.

Local degree: in local coordinates about x, f determines a map $(f_1, \ldots, f_n) : \mathbb{R}^n \to \mathbb{R}^n$ with $J = \det\left(\frac{\partial f_i}{\partial x_j}\right)$ and

$$\deg_x(f) = \begin{cases} +1, & J(x) > 0\\ -1, & J(x) < 0 \end{cases}$$

Introduction	The Grothendieck–Witt ring	A ¹ -local degree	A [⊥] -Euler class	A ¹ -Euler class
00000000		○○●○○○○○○○○	000000	0000000000
Topologic	al degree			

$$\deg(f) = \sum_{f(x)=y} \deg_x(f)$$

where y is a regular value of f and $\deg_x(f)$ is the *local degree* at x.

We can view this as a homomorphism $deg: [S^n, S^n] \to \mathbb{Z}$.

≜ ¹ -topolog	aical degree			
Introduction	The Grothendieck–Witt ring	∧ ¹ -local degree	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000

Observation: as a real algebraic variety, $S^n \cong \mathbb{P}^n_{\mathbb{R}} / \mathbb{P}^{n-1}_{\mathbb{R}}$.

^{A1} -topolog	gical degree			
Introduction	The Grothendieck–Witt ring	∧ ¹ -local degree	. [¶] -Euler class 000000	\mathbb{A}^1 -Euler class 0000000000

Observation: as a real algebraic variety, $S^n \cong \mathbb{P}^n_{\mathbb{R}}/\mathbb{P}^{n-1}_{\mathbb{R}}$.

Over arbitrary k, Morel ('06) constructed a map

$$\deg^{\mathbb{A}^1}: [\mathbb{P}^n/\mathbb{P}^{n-1}, \mathbb{P}^n/\mathbb{P}^{n-1}]_{\mathbb{A}^1} \longrightarrow GW(k)$$

using \mathbb{A}^1 -homotopy theory.

Brief summary: cohomology functors on Sm_k are represented by objects in a category SH(k) and we have

$$[\mathbb{P}^n/\mathbb{P}^{n-1},\mathbb{P}^n/\mathbb{P}^{n-1}]_{\mathbb{A}^1} = \mathrm{End}_{SH(k)}(\mathbb{P}^n/\mathbb{P}^{n-1}) \quad \text{and} \quad GW(k) \cong \widetilde{CH}^0(k)$$

for the functors $[-, \mathbb{P}^n/\mathbb{P}^{n-1}]_{\mathbb{A}^1}$ and $\widetilde{CH}^0(-) \cong K_0^{MW}(-)$.

Introduction	The Grothendieck–Witt ring	A [⊥] -local degree	A [⊥] -Euler class	A [⊥] -Euler class
00000000		0000€000000	000000	0000000000
\mathbb{A}^1 -topolog	jical degree			

$$\deg(f) = \sum_{f(x)=y} \deg_x(f)$$

where y is a regular value of f and $\deg_x(f)$ is the *local degree* at x.

Local degree: in local coordinates about x, f is a map $(f_1, \ldots, f_n) : \mathbb{R}^n \to \mathbb{R}^n$ with $J = \det\left(\frac{\partial f_i}{\partial x_j}\right)$ and

$$\deg_x(f) = \begin{cases} +1, & J(x) > 0\\ -1, & J(x) < 0 \end{cases}$$

Introduction	The Grothendieck–Witt ring		\mathbb{A}^1 -Euler class	\mathbb{A}^1 -Euler class
00000000		∧ ¹ -local degree	000000	0000000000

A map $f \cdot \mathbb{P}^n / \mathbb{P}^{n-1} \rightarrow \mathbb{P}^n / \mathbb{P}^{n-1}$ has \mathbb{A}^1 -degree

 \mathbb{A}^{\perp} -topological degree

A map $f: \mathbb{P}^n/\mathbb{P}^{n-1} \to \mathbb{P}^n/\mathbb{P}^{n-1}$ has \mathbb{A}^1 -degree $\deg^{\mathbb{A}^1}(f) \in GW(k)$ defined by $\deg(f) = \sum \deg_x(f)$

f(x) = u

where y is a regular value of f and $\deg_x(f)$ is the *local deg* at x.

Local degree: in local coordinates about x, f is a map $(f_1, \ldots, f_n) : \mathbb{R}^n \to \mathbb{R}^n$ with $J = \det\left(\frac{\partial f_i}{\partial x_j}\right)$ and

$$\deg_x(f) = \begin{cases} +1, & J(x) > 0\\ -1, & J(x) < 0 \end{cases}$$

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	\mathbb{A}^1 -Euler class
00000000		000000000000	000000	0000000000
1 -				

A map $f: \mathbb{P}^n/\mathbb{P}^{n-1} \to \mathbb{P}^n/\mathbb{P}^{n-1}$ has \mathbb{A}^1 -degree $\deg^{\mathbb{A}^1}(f) \in GW(k)$ defined by $\deg^{\mathbb{A}^1}(f) = \sum_{f(x)=y} \deg_x^{\mathbb{A}^1}(f)$

where f is étale at x and $\deg_x^{\mathbb{A}^1}(f)$ is the \mathbb{A}^1 -local degree at x.

Local degree: in local coordinates about x, f is a map $(f_1, \ldots, f_n) : \mathbb{R}^n \to \mathbb{R}^n$ with $J = \det\left(\frac{\partial f_i}{\partial x_j}\right)$ and

$$\deg_x(f) = \begin{cases} +1, & J(x) > 0 \\ -1, & J(x) < 0 \end{cases}$$

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	\mathbb{A}^1 -Euler class
0000000	000000	000000000000	000000	0000000000

A map $f : \mathbb{P}^n / \mathbb{P}^{n-1} \to \mathbb{P}^n / \mathbb{P}^{n-1}$ has \mathbb{A}^1 -degree $\deg^{\mathbb{A}^1}(f) \in GW(k)$ defined by $\deg^{\mathbb{A}^1}(f) = \sum_{f(x)=y} \deg_x^{\mathbb{A}^1}(f)$

where f is étale at x and $\deg_x^{\mathbb{A}^1}(f)$ is the \mathbb{A}^1 -local degree at x.

 \mathbb{A}^1 -local degree: in Nisnevich local coordinates about x, f is a map $(f_0, \ldots, f_n) : \mathbb{A}^n \to \mathbb{A}^n$ with $J = \det\left(\frac{\partial f_i}{\partial x_j}\right)$ and

 $\deg_x^{\mathbb{A}^1}(f) = \langle J(x) \rangle \in GW(k)$

Introduction	The Grothendieck–Witt ring	▲ ¹ -local degree	. ▲ ¹ -Euler class	▲ ¹ -Euler class
		00000000000		

A map $f : \mathbb{P}^n / \mathbb{P}^{n-1} \to \mathbb{P}^n / \mathbb{P}^{n-1}$ has \mathbb{A}^1 -degree $\deg^{\mathbb{A}^1}(f) \in GW(k)$ defined by $\deg^{\mathbb{A}^1}(f) = \sum_{f(x)=y} \deg_x^{\mathbb{A}^1}(f)$

where f is étale at x and $\deg_x^{\mathbb{A}^1}(f)$ is the \mathbb{A}^1 -local degree at x.

 \mathbb{A}^1 -local degree: in Nisnevich local coordinates about x, f is a map $(f_0, \ldots, f_n) : \mathbb{A}^n \to \mathbb{A}^n$ with $J = \det\left(\frac{\partial f_i}{\partial x_j}\right)$ and

 $\deg_x^{\mathbb{A}^1}(f) = \langle J(x) \rangle \in GW(k) \quad \text{if } k(x) = k.$

Introduction	The Grothendieck–Witt ring	▲ ¹ -local degree	. ▲ ¹ -Euler class	▲ ¹ -Euler class
		00000000000		

A map $f : \mathbb{P}^n / \mathbb{P}^{n-1} \to \mathbb{P}^n / \mathbb{P}^{n-1}$ has \mathbb{A}^1 -degree $\deg^{\mathbb{A}^1}(f) \in GW(k)$ defined by $\deg^{\mathbb{A}^1}(f) = \sum_{f(x)=y} \deg_x^{\mathbb{A}^1}(f)$

where f is étale at x and $\deg_x^{\mathbb{A}^1}(f)$ is the \mathbb{A}^1 -local degree at x.

 \mathbb{A}^1 -local degree: in Nisnevich local coordinates about x, f is a map $(f_0, \ldots, f_n) : \mathbb{A}^n \to \mathbb{A}^n$ with $J = \det\left(\frac{\partial f_i}{\partial x_j}\right)$ and

 $\deg_x^{\mathbb{A}^1}(f) = \operatorname{Tr}_{k(x)/k}\langle J(x)\rangle \in GW(k)$ in general.

Introduction	The Grothendieck–Witt ring	. ¹ -local degree 0000000000	 \mathbb{A}^1 -Euler class 0000000000

This gives us a way of constructing classes in GW(k):

$$f: \mathbb{P}^n/\mathbb{P}^{n-1} \to \mathbb{P}^n/\mathbb{P}^{n-1} \quad \leadsto \quad \deg^{\mathbb{A}^1}(f) \in GW(k).$$

Next: turn an enumerative problem into such a map f.

Introduction	The Grothendieck–Witt ring	≜ ¹ -local degree	A ¹ -Euler class	A ¹ -Euler class
00000000		0000000000	●00000	0000000000

Outline of the talk

- Introduction
- The Grothendieck–Witt ring
- $\bullet \ \mathbb{A}^1 \text{-local degree}$
- A¹-Euler classes of vector bundles
- Non-oriented enumerative problems

Introduction	The Grothendieck–Witt ring	▲ ¹ -local degree	A ¹ -Euler class	\mathbb{A}^1 -Euler class
			00000	

Many enumerative problems can be solved by computing the **Euler** class e(E) of a vector bundle $E \rightarrow X$.

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	▲ ¹ -Euler class	\mathbb{A}^1 -Euler class
			00000	

Many enumerative problems can be solved by computing the **Euler** class e(E) of a vector bundle $E \rightarrow X$.

Example (Lines on a smooth cubic, revisited)

View our cubic as $S = \{F = 0\} \subseteq \mathbb{P}^3$.

Lines in \mathbb{P}^3 are parametrized by the Grassmannian Gr(2,4).

There is a rank 6 vector bundle $E \to Gr(2,4)$ such that

 $E_{\ell} = \{\text{homogeneous cubic forms on } \ell\}.$

There is also a section $\sigma_F : Gr(2,4) \to E, \ell \mapsto F|_{\ell}$, so that

 $\{\text{zeroes of } \sigma_F\} = \{\text{lines } \ell \subset \mathbb{P}^3 \text{ lying on } S\}.$

Over \mathbb{C} , the Euler class $e(E, \sigma_F) \in H^8(Gr(2, 4); \mathbb{Z}) \cong \mathbb{Z}$ is 27.

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	▲ ¹ -Euler class	\mathbb{A}^1 -Euler class
			00000	

Many enumerative problems can be solved by computing the **Euler** class e(E) of a vector bundle $E \rightarrow X$.

Example (Lines on a smooth cubic, revisited)

View our cubic as $S = \{F = 0\} \subseteq \mathbb{P}^3$.

Lines in \mathbb{P}^3 are parametrized by the Grassmannian Gr(2,4).

There is a rank 6 vector bundle $E \to Gr(2,4)$ such that

 $E_{\ell} = \{\text{homogeneous cubic forms on } \ell\}.$

There is also a section $\sigma_F : Gr(2,4) \to E, \ell \mapsto F|_{\ell}$, so that

{zeroes of σ_F } = {lines $\ell \subset \mathbb{P}^3$ lying on S}.

Over \mathbb{C} , the Euler class $e(E, \sigma_F) \in H^8(\text{Gr}(2, 4); \mathbb{Z}) \cong \mathbb{Z}$ is 27. *** *This does not depend on* σ_F ***

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	A ¹ -Euler class	\mathbb{A}^1 -Euler class
			00000	

Recall: For an *oriented* rank r vector bundle $E \to X$ with section $\sigma \in H^0(X, E)$, the topological Euler class $e(E, \sigma)$ is a characteristic class in $H^r(X; \mathbb{Z})$.

Introduction	The Grothendieck–Witt ring	. ▲ ¹ -local degree	A ¹ -Euler class	\mathbb{A}^1 -Euler class
			00000	

Recall: For an *oriented* rank r vector bundle $E \to X$ with section $\sigma \in H^0(X, E)$, the topological Euler class $e(E, \sigma)$ is a characteristic class in $H^r(X; \mathbb{Z})$.

When $r = \dim X$, $H^r(X; \mathbb{Z}) \cong \mathbb{Z}$ and $e(E, \sigma)$ can be computed by

$$e(E,\sigma) = \sum_{\sigma(x)=0} \operatorname{ind}_x(\sigma)$$

where $\operatorname{ind}_x(\sigma)$ is the local index of σ at x:

- in local coordinates around x, σ looks like a map $\mathbb{R}^r \to \mathbb{R}^r$
- $\operatorname{ind}_x(\sigma)$ is the degree of the bottom map

$$\begin{split} X/(X\smallsetminus\{x\}) &\longrightarrow E/(E\smallsetminus\{\sigma(x)\}) \\ & \uparrow \\ S^r \cong \mathbb{R}^r/(\mathbb{R}^r\smallsetminus\{0\}) &\longrightarrow \mathbb{R}^r/(\mathbb{R}^r\smallsetminus\{0\}) \cong S^r \end{split}$$

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree 00000000000	A ¹ -Euler class 000●00	¹ -Euler class 0000000000
\mathbb{A}^1 -Euler cl	asses			

For an *oriented* rank r vector bundle $E \to X$ with section $\sigma \in H^0(X, E)$, the \mathbb{A}^1 -Euler class $e(E, \sigma)$ is a class in $\widetilde{CH}^r(X, \det E^{\vee})$.

When $r = \dim X$, $H^r(X; \mathbb{Z}) \cong \mathbb{Z}$ and $e(E, \sigma)$ can be computed by

$$e(E,\sigma) = \sum_{\sigma(x)=0} \operatorname{ind}_x(\sigma)$$

where $\operatorname{ind}_x(\sigma)$ is the local index of σ at x:

- in local coordinates around x, σ looks like a map $\mathbb{R}^r \to \mathbb{R}^r$
- $\operatorname{ind}_x(\sigma)$ is the degree of the bottom map

$$\begin{split} X/(X\smallsetminus\{x\}) &\longrightarrow E/(E\smallsetminus\{\sigma(x)\}) \\ & \uparrow \\ S^r \cong \mathbb{R}^r/(\mathbb{R}^r\smallsetminus\{0\}) &\longrightarrow \mathbb{R}^r/(\mathbb{R}^r\smallsetminus\{0\}) \cong S^r \end{split}$$

Introduction	The Grothendieck–Witt ring	A ¹ -local degree	A ¹ -Euler class 0000●0	A ¹ -Euler class 0000000000
00000000	0000000	000000000000000000000000000000000000000	000000	0000000000

A¹-Euler classes

For an *oriented* rank r vector bundle $E \to X$ with section $\sigma \in H^0(X, E)$, the \mathbb{A}^1 -Euler class $e(E, \sigma)$ is a class in $\widetilde{CH}^r(X, \det E^{\vee})$.

When $r = \dim X$, $\widetilde{CH}^r(X, \det E^{\vee}) \cong \widetilde{CH}^0(k) = GW(k)$ and $e(E, \sigma)$ can be computed by

$$e(E,\sigma) = \sum_{\sigma(x)=0} \operatorname{ind}_x(\sigma)$$

where $\operatorname{ind}_x(\sigma)$ is the local index of σ at x:

- in local coordinates around x, σ looks like a map $\mathbb{R}^r \to \mathbb{R}^r$
- $\operatorname{ind}_x(\sigma)$ is the degree of the bottom map

$$\begin{array}{c} X/(X \smallsetminus \{x\}) \longrightarrow E/(E \smallsetminus \{\sigma(x)\}) \\ \uparrow \qquad \qquad \uparrow \\ S^r \cong \mathbb{R}^r/(\mathbb{R}^r \smallsetminus \{0\}) \longrightarrow \mathbb{R}^r/(\mathbb{R}^r \smallsetminus \{0\}) \cong S^r \end{array}$$

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	A ¹ -Euler class 00000●	A ¹ -Euler class 0000000000
0000000				

A¹-Euler classes

For an *oriented* rank r vector bundle $E \to X$ with section $\sigma \in H^0(X, E)$, the \mathbb{A}^1 -Euler class $e(E, \sigma)$ is a class in $\widetilde{CH}^r(X, \det E^{\vee})$.

When $r = \dim X$, $\widetilde{CH}^r(X, \det E^{\vee}) \cong \widetilde{CH}^0(k) = GW(k)$ and $e(E, \sigma)$ can be computed by

$$e(E,\sigma) = \sum_{\sigma(x)=0} \operatorname{ind}_x(\sigma)$$

where $\operatorname{ind}_{x}(\sigma)$ is the \mathbb{A}^{1} -local index of σ at x:

- in Nisnevich local coordinates around x, σ looks like $\mathbb{A}^r \to \mathbb{A}^r$
- $\operatorname{ind}_x(\sigma)$ is the \mathbb{A}^1 -degree of the bottom map

$$\begin{array}{ccc} X/(X\smallsetminus\{x\})\longrightarrow E/(E\smallsetminus\{\sigma(x)\}) \\ & \uparrow & \uparrow \\ \mathbb{P}^r/\mathbb{P}^{r-1}\cong & \mathbb{A}^r/(\mathbb{A}^r\smallsetminus\{0\})\longrightarrow \mathbb{A}^r/(\mathbb{A}^r\smallsetminus\{0\}) & \cong \mathbb{P}^r/\mathbb{P}^{r-1} \end{array}$$

Introduction 00000000	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class 000000	\mathbb{A}^1 -Euler class

Outline of the talk

- Introduction
- The Grothendieck–Witt ring
- $\bullet \ \mathbb{A}^1 \text{-local degree}$
- \mathbb{A}^1 -Euler classes of vector bundles
- Non-oriented enumerative problems

0000000				
Introduction 00000000	The Grothendieck–Witt ring	A ¹ -local degree 00000000000	A ¹ -Euler class 000000	A ¹ -Euler class 0●00000000

This is equivalent to $\det E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \to X$. An **orientation** of *E* is a choice of section $s \in H^0(X, \det E^{\vee})$ which is a square.

Orientability				
Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class 000000	A ¹ -Euler class ○●○○○○○○○○

This is equivalent to $\det E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \to X$. An orientation of E is a choice of section $s \in H^0(X, \det E^{\vee})$ which is a square.

- Bitangents to a smooth plane quartic
- Some cases of Bézout's Theorem
- Lines meeting 2n-2 general codim. 2 hyperplanes in \mathbb{P}^n for n even
- \mathbb{A}^1 -degrees of some covers of modular curves

Introduction	The Grothendieck–Witt ring	A ¹ -local degree	A [⊥] -Euler class	A ¹ -Euler class
00000000		00000000000	000000	00●0000000

This is equivalent to $\det E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \to X$. An orientation of E is a choice of section $s \in H^0(X, \det E^{\vee})$ which is a square.

- Bitangents to a smooth plane quartic (Larson–Vogt '19)
- Some cases of Bézout's Theorem
- Lines meeting 2n-2 general codim. 2 hyperplanes in \mathbb{P}^n for n even
- \mathbb{A}^1 -degrees of some covers of modular curves

Orientability				
Introduction	The Grothendieck–Witt ring	. ¹ -local degree 0000000000000000	. ▲ ¹ -Euler class 000000	. ¹ -Euler class 000●000000

This is equivalent to $\det E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \to X$. An orientation of E is a choice of section $s \in H^0(X, \det E^{\vee})$ which is a square.

- Bitangents to a smooth plane quartic (Larson–Vogt '19)
- Some cases of Bézout's Theorem (McKean '20)
- Lines meeting 2n-2 general codim. 2 hyperplanes in \mathbb{P}^n for n even
- \mathbb{A}^1 -degrees of some covers of modular curves

	0000000	0000000000
Orientability		

This is equivalent to $\det E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \to X$. An orientation of E is a choice of section $s \in H^0(X, \det E^{\vee})$ which is a square.

- Bitangents to a smooth plane quartic (Larson–Vogt '19)
- Some cases of Bézout's Theorem (McKean '20)
- Lines meeting 2n 2 general codim. 2 hyperplanes in \mathbb{P}^n for n even (K.–Taylor '20, for n = 4)
- \mathbb{A}^1 -degrees of some covers of modular curves

Introduction	The Grothendieck–Witt ring	[⊥] -local degree	A [⊥] -Euler class	A ¹ -Euler class
00000000		00000000000	000000	00000000000
Orientabilit	у			

This is equivalent to $\det E^{\vee} \cong L^{\otimes 2}$ for some line bundle $L \to X$. An orientation of E is a choice of section $s \in H^0(X, \det E^{\vee})$ which is a square.

- Bitangents to a smooth plane quartic (Larson–Vogt '19)
- Some cases of Bézout's Theorem (McKean '20)
- Lines meeting 2n 2 general codim. 2 hyperplanes in \mathbb{P}^n for n even (K.–Taylor '20, for n = 4)
- A¹-degrees of some covers of modular curves (Kim–Park '21, only in the oriented case)

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	A ¹ -Euler class
00000000		00000000000	000000	00000000000

Suppose (E, σ) is a vector bundle and section over X that represents a non-orientable enumerative problem, so $L = \det E^{\vee}$ is not a square.

Introduction 00000000	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree 0000000000000000000000000000000000	\mathbb{A}^1 -Euler class 000000	A ¹ -Euler class 000000●000

Suppose (E, σ) is a vector bundle and section over X that represents a non-orientable enumerative problem, so $L = \det E^{\vee}$ is not a square.

Naive solution: Take a double cover $Y \xrightarrow{\pi} X$, pull (E, σ) back to $(\pi^*E, \pi^*\sigma)$ and compute $e(\pi^*E, \pi^*\sigma)$.

$$Y \longrightarrow X$$
 orientable $(\pi^*E, \pi^*\sigma) \longleftrightarrow (E, \sigma)$ non-orientable

In general, this depends on π (and possibly σ , the orientation, etc.)

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	▲ ¹ -Euler class	\mathbb{A}^1 -Euler class
				00000000000

Suppose (E, σ) is a vector bundle and section over X that represents a non-orientable enumerative problem, so $L = \det E^{\vee}$ is not a square.

Our solution: Let $\mathcal{X} = \sqrt{(L,s)/X}$ be the **root stack** of *X* with respect to *L* and an appropriate section $s \in H^0(X,L)$.

$$\mathcal{X} \longrightarrow X$$
 orientable $(\mathcal{E}, \tau) \longleftrightarrow (E, \sigma)$ non-orientable

Theorem

There is a well-defined Euler class $e(\mathcal{E}, \tau) \in GW(k)$ which is independent of s and all choices of coordinates.

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	A ¹ -Euler class
00000000		00000000000	000000	0000000●00

Suppose (E, σ) is a vector bundle and section over X that represents a non-orientable enumerative problem, so $L = \det E^{\vee}$ is not a square.

Our solution: Let $\mathcal{X} = \sqrt{(L,s)/X}$ be the **root stack** of *X* with respect to *L* and an appropriate section $s \in H^0(X,L)$.

$$\mathcal{X} \longrightarrow X$$
 orientable $(\mathcal{E}, \tau) \longleftrightarrow (E, \sigma)$ non-orientable

Theorem

There is a well-defined Euler class $e(\mathcal{E}, \tau) \in GW(k)$ which is independent of s and all choices of coordinates.

Further, $e(\mathcal{E}, \tau)$ is often independent of τ , producing an enriched count of the given enumerative problem in GW(k).

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree 00000000000	\mathbb{A}^1 -Euler class 000000	A ¹ -Euler class 00000000●0

Example (Lines and planes in \mathbb{P}^4)

(K.–Taylor '20) There are $3\langle 1 \rangle + 2\langle -1 \rangle$ lines meeting 6 general 2-planes in \mathbb{P}^4 .

Introduction	The Grothendieck–Witt ring	\mathbb{A}^1 -local degree	\mathbb{A}^1 -Euler class	A ¹ -Euler class
00000000		00000000000	000000	00000000●0

Example (Lines and planes in \mathbb{P}^4)

(K.–Taylor '20) There are $3\langle 1 \rangle + 2\langle -1 \rangle$ lines meeting 6 general 2-planes in \mathbb{P}^4 .

Further:

Conjecture (K.–Taylor '20)

For n even, there are

$$\frac{\mathbf{c}(\mathbf{n}-\mathbf{1})+\mathbf{i}(\mathbf{n})}{\mathbf{2}}\langle\mathbf{1}\rangle+\frac{\mathbf{c}(\mathbf{n}-\mathbf{1})-\mathbf{i}(\mathbf{n})}{\mathbf{2}}\langle-\mathbf{1}\rangle$$

lines meeting 2n-2 codimension 2 hyperplanes in \mathbb{P}^n .

Introduction 00000000	The Grothendieck–Witt ring	 A ¹ -Euler class 000000	A ¹ -Euler class 00000000●

Thank you!