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Introduction

Based on

A Primer on Zeta Functions and Decomposition Spaces
Andrew Kobin

Many examples of zeta functions in number theory and combinatorics are special cases of a construction in
homotopy theory known as a decomposition space. This article aims to introduce number theorists to the

relevant concepts in homotopy theory and lays some foundations for future applications of decomposition
spaces in the theory of zeta functions.

Comments: 23 pages

Subjects: Number Theory (math.NT); Algebraic Geometry (math.AG); Category Theory (math.CT)
MSCclasses: 11M06. 11M38, 14G10. 18N50, 16T1C 6A11. 55P99
Cite as arXiv:2011.13903 [math.NT]

(or arXiv:2011.13903v1 [math.NT] for this version)

and an upcoming preprint, tentatively titled “Categorifying quadratic
zeta functions” (with Jon Aycock).
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Introduction

Mysterious setup question: you probably know the definition of the
zeta function

oo

Gl =3 —

ns
n=1

(and you may know some examples of other zeta functions), but what
is a zeta function?
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The Riemann Zeta Function

The Riemann zeta function is a meromorphic function {gp(s) on the
complex plane defined for Re(s) > 1 by

=1
D=2 o

It has:

@ a product formula ¢g(s) = [ | : 71p*5
P
@ a functional equation £(s) = £(1 — s) for the “completed zeta
function” &(s) = m=*/2T" (%) (q(s)
@ information about the distribution of the primes

@ a Riemann hypothesis that predicts all “nontrivial” zeroes have
Re(s) = 3.
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The Riemann Zeta Function

More generally, a Dirichlet series is a complex function

F(s)=Y" f:j).

We will focus on the formal properties of Dirichlet series.

The coefficients f(n) assemble into an arithmetic function
f:N —= C. (Think: F'is a generating function for f.)

Then (g(s) is the Dirichlet series for ( : n +— 1.
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Arithmetic Functions

The space of arithmetic functions A = {f : N — C} form an algebra
under convolution:

=> f(d)yg

d|n

&\3

This identifies the algebra of formal Dirichlet series with A:

A+— DS(Q)

oo

f— F(s

frgr— F(s )G(S)
¢ Cols
7 — Q@(S

)
) 1
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Number Fields

For a number field K/Q, there is a zeta function (x (s) defined for
Re(s) > 1 by

@~ 2

ael

where I}t = {ideals in Ok} and N = N q.
Like the Riemann zeta function, (x (s) has:

1
@ a product formula ¢ (s) = H —_—
S L= N(p)

@ a functional equation
@ information about the distribution of prime ideals
@ a Riemann hypothesis
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Number Fields

As with {g(s), we can formalize certain properties of (k(s) in the
algebra of arithmetic functions Ax = {f : I;x — C} with

(fxg)(a) = f(b)g

bla
This admits a map to DS(Q):
N.:Ax — A= DS(Q)

fr— (N*f:nr—> Z f(a))

N(a)=n
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Number Fields

As with {g(s), we can formalize certain properties of (k(s) in the
algebra of arithmetic functions Ax = {f : I;x — C} with

(fxg)(a) = f(b)g
bla
This admits a map to DS(Q):

N, : Ag — A= DS(Q)

fr— (N*f:nr—> Z f(a))

N(a)=n
¢ N.C e Cr(s)
Tl g
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Varieties over Finite Fields

Let X be an algebraic variety over F,. Its point-counting zeta function
is the power series

Z(X,t) =exp [i #XSFqn)t"]

which has:

@ aproduct formula Z(X,t) = []
z€|X|

1
1 — ¢deg()

@ a functional equation
@ an expression as a rational function
@ a Riemann hypothesis which is a theorem!
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Varieties over Finite Fields

Once again, we can formalize certain properties of Z(X,t) in an
algebra of arithmetic functions.

Let Z5®(X) be the set of effective 0-cycles on X, i.e. formal Ny-linear
combinations of closed points of X, written o = " m,x. We say
B < aif 8 => n,z withn, <m, forall z € |X|.

Let Ax = {f: Z§®(X) — C} be the algebra of arithmetic functions
with
(f*9)a) =D f(B

B<La
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Varieties over Finite Fields

Let Ax = {f: Z5®(X) — C} be the algebra of arithmetic functions
with
(fxg)(a)=)_f(B
B<La

This time, there’s no map to DS(Q)...
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Varieties over Finite Fields

Let Ax = {f: Z5®(X) — C} be the algebra of arithmetic functions
with
(f*g)(@) = f(B)
B<La
This time, there’s no map to DS(Q)... but there’s a map to the algebra
of formal power series:

Ax — ASpecIFq = (CHt]]

fed ot

n=0

J > “deg,(f)
¢ “deg,(¢)" < Z(X,1)
¢l 72
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Varieties over Finite Fields

Let Ax = {f: Z5®(X) — C} be the algebra of arithmetic functions
with
(f*g)(@) = f(B)
B<La
This time, there’s no map to DS(Q)... but there’s a map to the algebra
of formal power series:

Ax — ASpecIFq = (CHt]]

fe > ot

n=0

f > "deg,(f)"
¢ "deg,(Q)" ¢ Z(X, 1)

(e opx
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What's really going on?
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What's really going on?

A, Ag and Ax are examples of the reduced incidence algebra of a
poset.
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Incidence Algebra of a Poset

Let (P, <) be a poset and define [z,y] ={z € P |z <z < y}. Call P
locally finite if every interval is finite.

Definition

The incidence coalgebra of a locally finite poset P is the free
k-vector space C(P) on the set of intervals in P, with comultiplication

[yl Y (2,2 ® 2.
z€[z,y]
The incidence algebra of P is the dual I(P) = Hom(C(P), k) with

multiplication

fog— (fxg)(zu) = Y [z 2D)g((z ).

2€[z,y]
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Incidence Algebra of a Poset

Let (P, <) be a poset and define [z,y] ={z € P |z <z < y}. Call P
locally finite if every interval is finite.

Definition

The incidence coalgebra of a locally finite poset P is the free
k-vector space C(P) on the set of intervals in P, with comultiplication

[yl Y (2,2 ® 2.
z€[z,y]
The incidence algebra of P is the dual I(P) = Hom(C(P), k) with

multiplication

fog— (fxg)(zy) = > f=2Dg(lzy).

2€[z,y]

Think: elements in I(P) are like arithmetic functions on the intervals
in P.
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Reduced Incidence Algebra of a Poset

Definition

The reduced incidence algebra of P is the subalgebra I(P) C I(P)
of functions that are constant on isomorphism classes of intervals.

Think: elements in I(P) are like arithmetic functions on the
isomorphism classes of intervals in P.
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Reduced Incidence Algebra of a Poset

Definition

The reduced incidence algebra of P is the subalgebra I(P) C I(P)
of functions that are constant on isomorphism classes of intervals.

Think: elements in I(P) are like arithmetic functions on the
isomorphism classes of intervals in P.

For the division poset (N, |), every interval is isomorphic to [1, n] for

some n. For f € I(N, ), write f(n) := f([1,n]). Then

I(N,|) = DS(Q)
f(n)

(
2

the zeta function ¢ : [z, y] — 1 always lives in I(P).

f—
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Numerical Incidence Algebras

Idea (due to Galvez-Carrillo, Kock and Tonks): zeta functions don’t
just come from posets, but from higher homotopy structure.

In this talk: zeta functions come from decomposition sets.

In general: zeta functions come from decomposition spaces.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : A°? — Set

-~ ==
So=——=51=—=55--.

A poset P determines a simplicial set NP with:
@ 0-simplices = elements x € P
@ 1-simplices = intervals [z, y]
@ 2-simplices = decompositions [z, y] = [z, 2] U [z, y]
@ etc.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : A°? — Set

- P —
SOHSIQSQ"' 5

More generally, any category C determines a simplicial set NC with:
@ 0-simplices = objects z in C
@ 1-simplices = morphisms z ER yinC
@ 2-simplices = decompositions = LN y=ux ENER Y
@ efc.
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Numerical Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Galvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition

The numerical incidence coalgebra of a decomposition set S is the
free k-vector space C(S) = @, s, kz with comultiplication

C(S) — C(S)®C(S)

T Z doo ® dyo.

g€S>
dio=z
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Numerical Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Galvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition

The numerical incidence algebra of a decomposition set S is the
dual vector space I(S) = Hom(C(S5), k) with multiplication
I(S)® I(S) — I(S)
fegr— (frg)(@)= > f(d20)g(doo).

g€ESs
dio=x
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Numerical Incidence Algebras

In I(S) = Hom(C(S), k), there is a distinguished element called the
zeta function ¢ : z — 1.
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Numerical Incidence Algebras

In I(S) = Hom(C(S), k), there is a distinguished element called the
zeta function ¢ : z — 1.

Key takeaways:

(1) A zeta function is ¢ € I(.S) for some decomposition set S.

(2) Familiar zeta functions like x(s) and Z(X,t) are constructed
from some ¢ € T(S) by pushing forward to another reduced
incidence algebra which can be interpreted in terms of
generating functions:

eg. I(N,|)=DS@Q), eg. I(Ny,<)=Ek[t].

(3) Some properties of zeta functions can be proven in the incidence
algebra directly:

eg. Gol) =[] 7= <= T = Q1))

p
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Objective Linear Algebra

The construction of I(.S) can be generalized further using the
formalism of objective linear algebra (“linear algebra with sets”):

Numerical Objective
basis B set B
vector v setmapv: X — B
M
matrix M span 7 K
B C
vector space V slice category Set 5
linear map with matrix M | linear functor ¢s* : Set,p — Set ¢
tensor product V@ W Set g ® Set ;o = Set g
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Objective Linear Algebra

The construction of I(.S) can be generalized further using the
formalism of objective linear algebra (“linear algebra with sets”):

Numerical Objective
basis B set B
vector v setmapv: X — B
M
matrix M span 7 K
B C
vector space V slice category Set 5
linear map with matrix M | linear functor ¢s* : Set,p — Set ¢
tensor product V@ W Set g ® Set ;o = Set g

To recover vector spaces, take V' = kP and take cardinalities.
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Abstract Incidence Algebras

How do we construct I(.S) as an “objective vector space”?

Numerical Objective
basis B set B

vector space V slice category Set 5
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Abstract Incidence Algebras

How do we construct I(.S) as an “objective vector space”?

Numerical Objective
basis B set B
vector space V slice category Set 5

basis S set S,
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Abstract Incidence Algebras

How do we construct I(.S) as an “objective vector space”?

Numerical Objective
basis B set B
vector space V slice category Set 5
basis 51 set Sy

C(S) = free vector space on S slice category C(S) := Set g,
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Abstract Incidence Algebras

How do we construct I(.S) as an “objective vector space”?

Numerical Objective
basis B set B
vector space V slice category Set 5
basis 51 set 51
C(S) = free vector space on S; slice category C(S) := Set g,
dual space I(S) = Hom(C(S), k) | dual space I(S) := Lin(Set,g,, Set)
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Abstract Incidence Algebras

How do we construct I(.S) as an “objective vector space”?

Numerical

Objective

basis B
vector space V
basis S;
C(S) = free vector space on S
dual space I(S) = Hom(C(S), k)

set B
slice category Set 5
set 51
slice category C'(S) := Set g,
dual space I(S) := Lin(Set g, , Set)

So an element f € I(S) is a linear functor f = t,s* : Set,5, — Set

represented by a span

f

M
e
S

K*
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Abstract Incidence Algebras

So an element f < I(S) is a linear functor f = #,s* : Set,g, — Set
represented by a span

M
=1 7 X
Sl *

The is the element ¢ € I(S) represented by

. Sl
c=| 2
Sl *
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Abstract Incidence Algebras

For two elements f, g € I(S) represented by

M N
S t
f= J \ and g= V \
Sl * Sl *
the convolution f x g € I(S) is represented by
P
SQ M x N

fxg)= }!/ %d())%t \

Sl Sl X 51 *
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Abstract Incidence Algebras

Advantages of the objective approach:
@ Intrinsic: zeta is built into the object S directly

@ General: most* zeta functions can be produced this way
@ Functorial: to compare zeta functions, find the right map S — T

@ Structural: proofs are categorical, avoiding choosing elements
(e.g. computing local factors of zeta functions explicitly is difficult)

@ Fun! you can try it yourself
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Quadratic Zeta Functions

For a quadratic number field K/Q, the zeta function (x (s) satisfies

Cr () = Co(s)L(x, s)

where L(x, s) is the L-function attached to the Dirichlet character
x = (£), where D = disc. of K.



Quadratic Zeta Functions
©000000000

Quadratic Zeta Functions

For a quadratic number field K/Q, the zeta function (x (s) satisfies

(k (s) = Cals)L(x s)

where L(x, s) is the L-function attached to the Dirichlet character
x = (£), where D = disc. of K.

In Aycock-K., we lift this formula to an equivalence of linear functors

in 1(Q) == I(N,]):
Nl +Co* X~ ZCo*xT
where N : (I}, |) — (N,|) is the norm and x*, x~ € 1(Q).

In the numerical incidence algebra, this becomes

Noilg =Co*(x"—x")=Co*x.
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Sketch of Proof

[ NoGic + Ga X~ = o x|

Let S = (N,|)and T = (I}, ), so that N : T'— S induces

N, : I(T) — I(8), fl—)(N*f:nH > f(a)).

N(a)=n
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Sketch of Proof

NiCx +Co*x~ = (g* xT ‘

Each term in the formula is represented by a span:

Ty

Nac=| YN

51 *
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Sketch of Proof

N*CKJrC@*X*gCQ*XJF‘

Each term in the formula is represented by a span:

S2 51 X Sl_

VRGN

Sl Sl X Sl *

Co*xx~ =

for a certain “vector” j~ : S| — S; representing x~.
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Sketch of Proof

NoCx + G X~ = Go* x|

Each term in the formula is represented by a span:

SQ 51 X Sf_

RN

S1 Sl X 51 *

Co*xxt =

for a certain “vector” j* : S{” — S; representing x*.
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Sketch of Proof

’N*CKJFC@*X*%CQ*x*‘

So the formula is an equivalence of the following spans:

TlLIPi

NI_IdloOz7 \
Sl *

1%

Pt
dl o Oé+/ \
Sl *

These are shown to be equivalent prime-by-prime and then
assembled into the global formula. O
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Other Quadratic Zeta Functions: Euler Characteristic

For a ramified double cover f : Y — X of Riemann surfaces, the
Riemann—Hurwitz formula says

X(Y) = 2x(X) + ) (e, — 1)

yey

It should be possible to lift this to a formula in I(SX), the incidence
algebra of the simplicial complex of X, guided by the fact that

(1— t)fx(X) - iX(X(n))tn

n=0

is a generating function for the Euler characteristics of (symmetric
powers of) X.
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Other Quadratic Zeta Functions: Elliptic Curves

For an elliptic curve E/F, the zeta function Z(E, t) can be written

1 — agt + qt> 1
Z(Et) = ——L—— = Z(P',t)L(E,t).
() = T g =gy = 2B OLE
We are working on lifting this formula to the (reduced) incidence
algebra I(Z5®(P')). Pushing forward to 1(Z§®(SpecF,)) = k[[t]], it
already reads
(75)+Ce = (mp1)Cor % L(E).
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More Dreams

These are some other things | want to do:
@ Extend our approach to “higher degree covers”, e.g. for any
abelian number field K/Q, Cx (s) = [ [ L(x, s)
X

@ Study the zeta function of an algebraic stack X — X in terms of
(x, e.g. over F, Behrend defines Z(X,t) for such a stack.

@ Construct the right incidence algebra to house the motivic zeta

function Z,,,: (X, t) = Z[X(n)]tn_

n=0

@ Realize archimedean factors of completed zeta functions as
elements of abstract incidence algebras, e.g. the factor at co

Coo(s) = m73/2T (5).

Key insight: decomposition sets ~» decomposition spaces
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Thank you!
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