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Based on

and an upcoming preprint, tentatively titled “Categorifying quadratic
zeta functions” (with Jon Aycock).
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Introduction

Mysterious setup question: you probably know the definition of the
zeta function

ζQ(s) =

∞∑
n=1

1

ns

(and you may know some examples of other zeta functions), but what
is a zeta function?
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The Riemann Zeta Function

The Riemann zeta function is a meromorphic function ζQ(s) on the
complex plane defined for Re(s) > 1 by

ζQ(s) =

∞∑
n=1

1

ns
.

It has:

a product formula ζQ(s) =
∏
p

1

1− p−s

a functional equation ξ(s) = ξ(1− s) for the “completed zeta
function” ξ(s) = π−s/2Γ

(
s
2

)
ζQ(s)

information about the distribution of the primes
a Riemann hypothesis that predicts all “nontrivial” zeroes have
Re(s) = 1

2 .
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The Riemann Zeta Function

More generally, a Dirichlet series is a complex function

F (s) =

∞∑
n=1

f(n)

ns
.

We will focus on the formal properties of Dirichlet series.

The coefficients f(n) assemble into an arithmetic function
f : N→ C. (Think: F is a generating function for f .)

Then ζQ(s) is the Dirichlet series for ζ : n 7→ 1.
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Arithmetic Functions

The space of arithmetic functions A = {f : N→ C} form an algebra
under convolution:

(f ∗ g)(n) =
∑
d|n

f(d)g
(
n
d

)
.

This identifies the algebra of formal Dirichlet series with A:

A←→ DS(Q)

f 7−→ F (s) =

∞∑
n=1

f(n)

ns

f ∗ g 7−→ F (s)G(s)

ζ 7−→ ζQ(s)

?? 7−→ ζQ(s)−1
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Number Fields

For a number field K/Q, there is a zeta function ζK(s) defined for
Re(s) > 1 by

ζK(s) =
∑
a∈I+K

1

N(a)s
=

∞∑
n=1

#{a | N(a) = n}
ns

where I+
K = {ideals in OK} and N = NK/Q.

Like the Riemann zeta function, ζK(s) has:

a product formula ζK(s) =
∏
p

1

1−N(p)−s

a functional equation
information about the distribution of prime ideals
a Riemann hypothesis



Introduction Incidence Algebras Quadratic Zeta Functions

Number Fields

As with ζQ(s), we can formalize certain properties of ζK(s) in the
algebra of arithmetic functions AK = {f : I+

K → C} with

(f ∗ g)(a) =
∑
b|a

f(b)g(ab−1).

This admits a map to DS(Q):

N∗ : AK −→ A ∼= DS(Q)

f 7−→

N∗f : n 7→
∑

N(a)=n

f(a)


ζ 7−→ N∗ζ ↔ ζK(s)

ζ−1 7−→ ??
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Varieties over Finite Fields

Let X be an algebraic variety over Fq. Its point-counting zeta function
is the power series

Z(X, t) = exp

[ ∞∑
n=1

#X(Fqn)

n
tn

]

which has:

a product formula Z(X, t) =
∏
x∈|X|

1

1− tdeg(x)

a functional equation
an expression as a rational function
a Riemann hypothesis which is a theorem!
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Varieties over Finite Fields

Once again, we can formalize certain properties of Z(X, t) in an
algebra of arithmetic functions.

Let Zeff
0 (X) be the set of effective 0-cycles on X, i.e. formal N0-linear

combinations of closed points of X, written α =
∑
mxx. We say

β ≤ α if β =
∑
nxx with nx ≤ mx for all x ∈ |X|.

Let AX = {f : Zeff
0 (X)→ C} be the algebra of arithmetic functions

with
(f ∗ g)(α) =

∑
β≤α

f(β)g(α− β).
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Varieties over Finite Fields

Let AX = {f : Zeff
0 (X)→ C} be the algebra of arithmetic functions

with
(f ∗ g)(α) =

∑
β≤α

f(β)g(α− β).

This time, there’s no map to DS(Q)...

but there’s a map to the algebra
of formal power series:

AX −→ ASpec Fq
∼= C[[t]]

f ↔
∞∑
n=0

f(n)tn

f 7−→ “ deg∗(f)”
ζ 7−→ “ deg∗(ζ)”↔ Z(X, t)

ζ−1 7−→ ??
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What’s really going on?

A,AK and AX are examples of the reduced incidence algebra of a
poset.
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Incidence Algebra of a Poset

Let (P,≤) be a poset and define [x, y] = {z ∈ P | x ≤ z ≤ y}. Call P
locally finite if every interval is finite.

Definition
The incidence coalgebra of a locally finite poset P is the free
k-vector space C(P) on the set of intervals in P, with comultiplication

[x, y] 7−→
∑

z∈[x,y]

[x, z]⊗ [z, y].

The incidence algebra of P is the dual I(P) = Hom(C(P), k) with
multiplication

f ⊗ g 7−→ (f ∗ g)([x, y]) =
∑

z∈[x,y]

f([x, z])g([z, y]).

Think: elements in I(P) are like arithmetic functions on the intervals
in P.
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Reduced Incidence Algebra of a Poset

Definition

The reduced incidence algebra of P is the subalgebra Ĩ(P) ⊆ I(P)
of functions that are constant on isomorphism classes of intervals.

Think: elements in Ĩ(P) are like arithmetic functions on the
isomorphism classes of intervals in P.

Example

For the division poset (N, |), every interval is isomorphic to [1, n] for
some n. For f ∈ Ĩ(N, |), write f(n) := f([1, n]). Then

Ĩ(N, |) ∼= DS(Q)

f 7−→
∞∑
n=1

f(n)

ns

Fact: the zeta function ζ : [x, y] 7→ 1 always lives in Ĩ(P).
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Numerical Incidence Algebras

Idea (due to Gálvez-Carrillo, Kock and Tonks): zeta functions don’t
just come from posets, but from higher homotopy structure.

In this talk: zeta functions come from decomposition sets.

In general: zeta functions come from decomposition spaces.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

A poset P determines a simplicial set NP with:
0-simplices = elements x ∈ P
1-simplices = intervals [x, y]

2-simplices = decompositions [x, y] = [x, z] ∪ [z, y]

etc.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

More generally, any category C determines a simplicial set NC with:
0-simplices = objects x in C

1-simplices = morphisms x f−→ y in C

2-simplices = decompositions x h−→ y = x
f−→ z

g−→ y

etc.
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Numerical Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition
The numerical incidence coalgebra of a decomposition set S is the
free k-vector space C(S) =

⊕
x∈S1

kx with comultiplication

C(S) −→ C(S)⊗ C(S)

x 7−→
∑
σ∈S2
d1σ=x

d2σ ⊗ d0σ.

σd2σ d0σ

d1σ
0

1

2
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Numerical Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition
The numerical incidence algebra of a decomposition set S is the
dual vector space I(S) = Hom(C(S), k) with multiplication

I(S)⊗ I(S) −→ I(S)

f ⊗ g 7−→ (f ∗ g)(x) =
∑
σ∈S2
d1σ=x

f(d2σ)g(d0σ).

σd2σ d0σ

d1σ
0

1

2
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Numerical Incidence Algebras

In I(S) = Hom(C(S), k), there is a distinguished element called the
zeta function ζ : x 7→ 1.

Key takeaways:
(1) A zeta function is ζ ∈ I(S) for some decomposition set S.
(2) Familiar zeta functions like ζK(s) and Z(X, t) are constructed

from some ζ ∈ Ĩ(S) by pushing forward to another reduced
incidence algebra which can be interpreted in terms of
generating functions:

e.g. Ĩ(N, |) ∼= DS(Q), e.g. Ĩ(N0,≤) ∼= k[[t]].

(3) Some properties of zeta functions can be proven in the incidence
algebra directly:

e.g. ζQ(s) =
∏
p

1

1− p−s
←→ Ĩ(N, |) ∼=

⊗
p

Ĩ({pk}, |).
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Objective Linear Algebra

The construction of I(S) can be generalized further using the
formalism of objective linear algebra (“linear algebra with sets”):

Numerical Objective
basis B set B

vector v set map v : X → B

matrix M span
B C

M
s t

vector space V slice category Set/B

linear map with matrix M linear functor t!s∗ : Set/B → Set/C

tensor product V ⊗W Set/B ⊗Set/C ∼= Set/B×C

To recover vector spaces, take V = kB and take cardinalities.
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Abstract Incidence Algebras

How do we construct I(S) as an “objective vector space”?

Numerical Objective
basis B set B

vector space V slice category Set/B

So an element f ∈ I(S) is a linear functor f = t!s
∗ : Set/S1

→ Set
represented by a span

f =


S1 ∗

M
s t


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Abstract Incidence Algebras

So an element f ∈ I(S) is a linear functor f = t!s
∗ : Set/S1

→ Set
represented by a span

f =


S1 ∗

M
s t


Example

The zeta functor is the element ζ ∈ I(S) represented by

ζ =


S1 ∗

S1

id


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Abstract Incidence Algebras

Example

For two elements f, g ∈ I(S) represented by

f =


S1 ∗

M
s

 and g =


S1 ∗

N
t


the convolution f ∗ g ∈ I(S) is represented by

f ∗ g) =

 S1 S1 × S1 ∗

S2 M ×N

P

d1
(d2, d0)

s× t


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Abstract Incidence Algebras

Advantages of the objective approach:
Intrinsic: zeta is built into the object S directly

General: most∗ zeta functions can be produced this way

Functorial: to compare zeta functions, find the right map S → T

Structural: proofs are categorical, avoiding choosing elements
(e.g. computing local factors of zeta functions explicitly is difficult)

Fun! you can try it yourself
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Quadratic Zeta Functions

For a quadratic number field K/Q, the zeta function ζK(s) satisfies

ζK(s) = ζQ(s)L(χ, s)

where L(χ, s) is the L-function attached to the Dirichlet character
χ =

(
D
·
)
, where D = disc. of K.

In Aycock-K., we lift this formula to an equivalence of linear functors
in Ĩ(Q) := Ĩ(N, |):

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

where N : (I+
K , |)→ (N, |) is the norm and χ+, χ− ∈ I(Q).

In the numerical incidence algebra, this becomes

N∗ζK = ζQ ∗ (χ+ − χ−) = ζQ ∗ χ.
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Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

Let S = (N, |) and T = (I+
K , |), so that N : T → S induces

N∗ : Ĩ(T ) −→ Ĩ(S), f 7−→

N∗f : n 7→
∑

N(a)=n

f(a)

 .
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Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

Each term in the formula is represented by a span:

N∗ζK =


S1 ∗

T1

N


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Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

Each term in the formula is represented by a span:

ζQ ∗ χ− =

 S1 S1 × S1 ∗

S2 S1 × S−1

P−

α−

d1
(d2, d0)

id× j−


for a certain “vector” j− : S−1 → S1 representing χ−.
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 S1 S1 × S1 ∗

S2 S1 × S+
1

P+

α+

d1
(d2, d0)

id× j+


for a certain “vector” j+ : S+

1 → S1 representing χ+.
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Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

So the formula is an equivalence of the following spans:
S1 ∗

T1

∐
P−

N t d1 ◦ α−

 ∼=


S1 ∗

P+

d1 ◦ α+


These are shown to be equivalent prime-by-prime and then
assembled into the global formula.
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Other Quadratic Zeta Functions: Euler Characteristic

For a ramified double cover f : Y → X of Riemann surfaces, the
Riemann–Hurwitz formula says

χ(Y ) = 2χ(X) +
∑
y∈Y

(ey − 1).

It should be possible to lift this to a formula in I(SX), the incidence
algebra of the simplicial complex of X, guided by the fact that

(1− t)−χ(X) =

∞∑
n=0

χ(X(n))tn

is a generating function for the Euler characteristics of (symmetric
powers of) X.
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Other Quadratic Zeta Functions: Elliptic Curves

For an elliptic curve E/Fq, the zeta function Z(E, t) can be written

Z(E, t) =
1− aqt+ qt2

(1− t)(1− qt)
= Z(P1, t)L(E, t).

We are working on lifting this formula to the (reduced) incidence
algebra Ĩ(Zeff

0 (P1)). Pushing forward to Ĩ(Zeff
0 (SpecFq)) ∼= k[[t]], it

already reads
(πE)∗ζE = (πP1)∗ζP1 ∗ L(E).
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More Dreams

These are some other things I want to do:
Extend our approach to “higher degree covers”, e.g. for any
abelian number field K/Q, ζK(s) =

∏
χ

L(χ, s)

Study the zeta function of an algebraic stack X → X in terms of
ζX , e.g. over Fq, Behrend defines Z(X , t) for such a stack.

Construct the right incidence algebra to house the motivic zeta

function Zmot(X, t) =

∞∑
n=0

[X(n)]tn.

Realize archimedean factors of completed zeta functions as
elements of abstract incidence algebras, e.g. the factor at∞
ζ∞(s) = π−s/2Γ

(
s
2

)
.

Key insight: decomposition sets decomposition spaces
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Thank you!
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