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Abstract

We extend our previous classification of stacky curves in positive characteristic using
higher ramification data and Artin–Schreier–Witt theory. The main new technical tool
introduced is the Artin–Schreier–Witt root stack, a generalization of root stacks to the
wildly ramified setting. We then apply our wild Riemann–Hurwitz theorem for stacks
to compute the canonical rings of some wild stacky curves.

1 Introduction

Classical algebraic geometry in characteristic p > 0 already presents a wealth of new phe-
nomena that do not arise in characteristic 0. Consider for instance the topology of the
complex plane, viewed as the affine curve A1

C. Since A1
C is simply connected, it has no non-

trivial coverings; it is not until one removes points from A1
C that more interesting topology

begins to appear. In contrast, for an algebraically closed field k of characteristic p > 0,
the affine line A1

k is far from being simply connected: Abhyankar’s conjecture (a theorem of
Harbater [Har] and Raynaud [Ray]) describes the finite quotients of the étale fundamental
group π1(A1

k), but this profinite group is not even solvable.
The key observation in studying these phenomena is that étale covers of A1

k correspond
to covers of P1

k which are ramified over the point at infinity. In characteristic p > 0, ramified
covers of curves (or equivalently, function field extensions) can be studied using various
ramification filtrations of their Galois groups. For example, by Artin–Schreier theory, Z/pZ-
extensions of a perfect field K of characteristic p are all of the form

L = K[x]/(xp − x− a) for some a ∈ K, a 6= bp − b for any b ∈ K.

If K is a discretely valued field with valuation v, the integer m = −v(a) coincides with the
jump in the ramification filtration of Gal(L/K). This jump is an isomorphism invariant of
the extension and (after completion) essentially classifies degree p extensions. This situation
can be understood geometrically as follows. When K is a function field corresponding to a
curve C, then Z/pZ-extensions L/K are equivalent to Z/pZ-covers D → C, up to birational

1The author is partially supported by the American Mathematical Society and the Simons Foundation.

1



1.1 Stacks in Characteristic p

equivalence, and each of these covers can be obtained by pulling back the Artin–Schreier
isogeny ℘ : Ga → Ga, x 7→ xp − x along a map C → Ga.

A geometric description of the ramification jump m requires more work. Assume D → C
has a single branch point P ∈ C and consider instead a map h : C → P1, where P1 is viewed
as the one-point compactification of Ga and P maps to the distinguished point ∞ in P1.
The Artin–Schreier isogeny on Ga extends to a degree p map Ψ1 : P1 → P1 and one shows
that the cover D → C may be obtained by pulling back Ψ1 along h. It also follows that m
is precisely the order of vanishing of h at P .

Artin–Schreier–Witt theory generalizes Artin–Schreier theory to the case of Z/pnZ-extensions
of K for n ≥ 2. Namely, these are all of the form

L = K[x]/(xp − x− a) for some a ∈Wn(K), a 6= bp − b for any b ∈Wn(K).

Here, Wn(K) is the ring of length n p-typical Witt vectors over K and x = (x0, x1, . . . , xn−1)
is a Witt vector of indeterminates. When K is a function field, extensions L/K are obtained
by pulling back the Artin–Schreier–Witt isogeny

℘ : Wn −→Wn, x 7−→ xp − x

along a map C →Wn, where C is a curve with function field K.
To study the ramification invariants geometrically, Garuti [Gar] introduced a compacti-

fication Wn of the ring Wn which plays the same role for cyclic pn-covers as P1 played for p-
covers in the above paragraph. Concretely, ℘ extends to a degree pn map Ψn : Wn →Wn and
Z/pnZ-covers of curves D → C can be obtained by pulling back Ψn along a map h : C →Wn.
Then, the n different jumps in the ramification filtration of Gal(D/C) ∼= Z/pnZ coincide with
the orders of vanishing of h along the pullbacks of various divisors in Wn [Gar, Thm. 1].

1.1 Stacks in Characteristic p

In [Kob], the author introduced a construction called an Artin–Schreier root stack in order to
study Z/pZ-covers of curves using stacks and to classify stacky curves with wild ramification
of order p. Briefly, if D → C is a cover of curves branched at P ∈ C such that the
inertia group at P is I ∼= Z/pZ (as algebraic groups), let m be the ramification jump of
the ramification filtration of I. Then étale-locally, the corresponding map h : C → P1

taking P to ∞ factors through the weighted projective line P(1,m), which admits a degree
p map P(1,m) → P(1,m). This map descends to the quotient stack, ℘m : [P(1,m)/Ga] →
[P(1,m)/Ga], and pulling back ℘m along h defines the Artin–Schreier root stack of C, denoted
℘−1
m ((L, s, f)/C). This definition is made global in [Kob, Def. 6.9].

One of the main applications of this construction, [Kob, Thm. 6.16], shows that every
such cover of curves D → C factors étale-locally through an Artin–Schreier root stack which
is a wild stacky curve. Another, [Kob, Thm. 6.18], classifies wild stacky curves with this
type of inertia.

When the cover of curves (or instead, the wild stacky curve) has inertia of order pn for
some n ≥ 2, it is always possible to iterate the Artin–Schreier root stack construction to
obtain the desired stacky structure [Kob, Lem. 6.11]. However, the local equations/geometric
data quickly becomes messy (as with ordinary curves). In the cyclic case, we would like to

2



1.2 Application: Canonical Rings of Stacky Curves

directly generalize the construction in [Kob], rather than having to take towers of Artin–
Schreier roots. This leads us to Garuti’s geometric version of Artin–Schreier–Witt theory
described in the introduction.

In Section 4.3, we introduce a stacky version Wn(m) of Garuti’s compactification which
then allows us to define the Artin–Schreier–Witt root stack of a scheme X along a map
X → [Wn(m)/Wn]. Here, m = (m1, . . . ,mn) is a sequence of positive integers related to
the ramification jumps of the ramified covers of X one wants to allow through this stacky
structure. As a functor, Wn(m) generalizes the n = 1 case W1(m) = P(1,m), the weighted
projective stack whose functor of points is described from this perspective in [Kob, Prop. 6.4].
For n ≥ 2, a map X →Wn(m) is determined by a tuple (L, s, f1, . . . , fn), where L is a line
bundle on X, s is a section of L and fi is a section of L⊗mi ; see Proposition 4.11. The
resulting root stack is denoted Ψ−1

m ((L, s, f1, . . . , fn)/X).
The simple reason for keeping track of all this extra data is that wildly ramified structures

(covers of curves, stacks, etc.) are more diverse than tame structures and require more
invariants to classify. This is already evident in the n = 1 case [Kob, Rem. 6.19] and will
play a role in the classification results of the present article, summarized in the following two
theorems.

Theorem 1.1 (Theorem 5.6). Suppose Y → X is a finite separable Galois cover of curves
over an algebraically closed field of characteristic p > 0, with a ramification point y ∈ Y
over x ∈ X having inertia group I(y | x) ∼= Z/pnZ. Then étale-locally, ϕ factors through an
Artin–Schreier–Witt root stack Ψ−1

m ((L, s, f1, . . . , fn)/X).

Theorem 1.2 (Theorem 5.7). Let X be a stacky curve over a perfect field of characteristic
p > 0. Then for any stacky point x with cyclic automorphism group of order pn, there is
an open substack Z ⊆ X containing x which is isomorphic to Ψ−1

m ((L, s, f1, . . . , fn)/Z) for
some m and L, s, f1, . . . , fn on an open subscheme Z of the coarse space of X .

In Section 6, we also package together the collection of Ψ−1
m ((L, s, f1, . . . , fn)/X) into a

universal Artin–Schreier–Witt root stack ASWX and give a unified description of Z/pnZ-
covers in Theorem 6.3.

More work is needed to handle stacky points with more general automorphism groups.
By classical ramification theory [Ser2, Ch. IV], these can be of the form P oZ/rZ where P
is a p-group and r is prime to p. By iterating tame and wild root stacks, one can achieve any
desired stacky structure. It is unclear how to globalize this procedure, as we do with each
individual root stack using [A1/Gm] and [Wn(m)/Wn]. However, see Section 8 for a possible
approach.

1.2 Application: Canonical Rings of Stacky Curves

In classical algebraic geometry, the canonical ring of a projective curve X is defined as the
graded ring

R(X) =
∞⊕
k=0

H0(X,ω⊗kX ),

where ωX is the canonical sheaf. The canonical ring contains important information about
the geometry of X; for example, when X is smooth of genus at least 2, ProjR(X) is a model
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for X. Explicit descriptions of R(X) exist, such as Petri’s theorem (cf. [VZB, Sec. 1.1]),
which in turn provide explicit equations for X inside projective space.

Replacing X with a stacky curve X , one can similarly define a canonical ring R(X ) in
order to study models of X inside weighted projective space. Generalizing results like Petri’s
theorem, Voight and Zureick-Brown provide generators and relations for R(X ) when X is a
tame log stacky curve [VZB, Thm. 1.4.1].

For number theorists, one of the most useful applications of theorems like loc. cit. is
to modular forms. When X is a modular stacky curve (that is, a modular curve with
stacky structure encoding the automorphisms of elliptic curves with a given level stucture),
a logarithmic version of R(X ) is isomorphic to a graded ring of modular forms and the
description in loc. cit. recovers formulas for generators and relations of rings of modular
forms. Notably, this description holds in all characteristics, as long as the modular curve
has no wild ramification. Nevertheless, many modular curves have wild ramification in
characteristic p, such as X(1) in characteristics 2 and 3, and therefore the results of [VZB]
do not apply.

In [Kob], we began investigating canonical rings of wild stacky curves. The starting place
is a stacky Riemann–Hurwitz formula that holds in all characteristics:

Theorem 1.3 (Stacky Riemann–Hurwitz, [Kob, Prop. 7.1]). For a stacky curve X with
coarse moduli space π : X → X, the canonical divisors KX and KX are related by the
formula

KX = π∗KX +
∑

x∈X (k)

∞∑
i=0

(|Gx,i| − 1)x.

Here, Gx,i is the ith group in the higher ramification filtration of the automorphism group
Gx at x.

Since the canonical sheaf ωX is the line bundle attached to the divisor KX , this result
is one of the main tools for computing the canonical ring of X in any characteristic. An
explicit example of KX for a wild stacky curve is computed in [Kob, Ex. 7.8]. At the time,
the structure theory of wild stacky curves (in particular, their local root stack structure)
was only developed for stacks with wild automorphism groups isomorphic to Z/pZ. The
main results in this article allow us to extend the approaches in [VZB, Kob] to more general
stacky curves.

In particular, one would like descriptions of rings of modular forms like those of [VZB,
Ch. 6] when the relevant modular curve is a wild stacky curve. Already, the modular stacky
curve X (1) is wild in characteristics 2 and 3; see Examples 7.4 and 7.5. Another example
noted in [VZB, Rmk. 5.3.11] is the quotient [X(p)/PSL2(Fp)] in characteristic 3, which is a
stacky P1 with two stacky points, one having tame automorphism group Z/pZ and the other
having wild automorphism group S3. We will compute canonical divisors for these curves in
Section 7. In joint work in progress with David Zureick-Brown, we give a description of the
corresponding rings of modular forms using this theory.
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1.3 Relation to Other Work

Moduli spaces of wildly ramified curves in characteristic p > 0 have been studied in a number
of places. In [Pri], the author constructs a moduli space for G-covers of curves with inertia
groups of the form Z/pZoZ/rZ and prescribed ramification jumps. In particular, [loc. cit.,
Thm. 3.3.4] describes the moduli of covers of P1 branched at one point, which is the situation
we will analyze in detail in Example 5.2 for inertia groups Z/pnZ. To turn this moduli
problem into a moduli stack, one could replace the configuration space (Gm × Gr−1

a )/µp−1

from [loc. cit., Def. 2.2.5] with the quotient stack [(Gm × Gr−1
a )/µp−1], whose coarse space

is the configuration space. It is likely that certain substacks of this stack correspond to
refinements of the moduli problem of G-covers.

Along these lines, the authors in [DH] stratify the moduli space of Z/pnZ-covers by
specifying the sequence of conductors in the tower of Z/pZ-subcovers. These strata are
refined moduli problems represented by algebraic stacks [loc. cit, Prop. 3.4, Cor. 3.5] and the
authors identify irreducible components of these stacks. It is likely that their moduli stacks
have connections to the stacks described in Section 6, though we will leave such a description
to future work.

The stacks in Section 6 also has connections to the moduli stacks of formal G-torsors
considered in [TY]. In particular, when G = Z/pnZ, these moduli stacks can be filled out
by Artin–Schreier–Witt stacks; see Example 6.2.

Finally, the structure theorem 1.2 can be viewed as a wild analogue of the structure theory
in [GS], for stacky curves. Further work is needed to extend the theory beyond dimension 1
and, as mentioned in Section 8, beyond the cyclic wild case.

1.4 Outline of the Paper

The paper is organized as follows. In Section 2, we recall the basic geometry of stacky curves.
Section 3 is a brief survey of wild ramification and Artin–Schreier–Witt theory. To carry
these tools over to stacky curves, we use a construction of Garuti [Gar] which is described in
Section 4.2. The construction of Artin–Schreier–Witt root stacks is carried out in Section 4.3,
followed by our main classification theorems for wild stacky curves in Section 5. Section 6
describes how to capture all Artin–Schreier–Witt covers of curves using a limit of Artin–
Schreier–Witt root stacks. Finally, in Section 7, we apply the results here and in [Kob] to
compute several examples of canonical rings of stacky curves.

The author would like to thank Andrew Obus and David Zureick-Brown for their guidance
on this project. Particular thanks go to David for suggesting the proof of Lemma 2.6.

2 Stacky Curves

In this section, we collect the basic definitions and properties for stacky curves needed for
later sections.
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2.1 Review of Stacks

For a scheme S, let SchS be the category of schemes over S, equipped with a Grothendieck
topology (usually the étale topology). Let X be a category fibred in groupoids (CFG) over
SchS. The following definitions are standard:

� The CFG X is a stack if for every object U ∈ SchS and every covering {Ui → U}, the
induced morphism X (U)→ X ({Ui → U}) is an equivalence of categories.

� A stack X is an algebraic stack if the diagonal ∆ : X → X ×S X is representable
and X admits a smooth surjection U → X , where U is an S-scheme. Such a surjection
is called a presentation of X .

� A stack X is a Deligne–Mumford stack if it is algebraic and the smooth presentation
above is in fact étale.

The set of points of a stack X , denoted |X |, is defined to be the set of equivalence classes
of morphisms x : Spec k → X , where k is a field, and where two points x : Spec k → X
and x′ : Spec k′ → X are said to be equivalent if there exists a field L ⊇ k, k′ such that the
diagram

SpecL

Spec k

Spec k′

X

x

x′

commutes. The automorphism group of a point x ∈ |X | is defined to be the pullback Gx in
the following diagram:

Gx Spec k

X X ×S X

(x, x)

∆X

A geometric point is a point x̄ : Spec k → X where k is algebraically closed.

Remark 2.1. Colloquially, a Deligne–Mumford stack is said to have finite automorphism
groups. The technical fact is that an algebraic stack over S with finitely presented diagonal
is Deligne–Mumford if and only for every geometric point x̄ of X , the automorphism group
Gx̄ is a reduced, finite group scheme [Ols, Thm. 8.3.3, Rmk. 8.3.4]. When S = Spec k̄ for
an algebraically closed field k̄, this is equivalent to saying each automorphism group Gx̄ is
finite.
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A stacky curve is a smooth, separated, connected, one-dimensional Deligne–Mumford
stack which is generically a scheme, i.e. there exists an open subscheme U of the coarse
moduli space X of X such that the induced map X ×X U → U is an isomorphism.

Finally, when S = Spec k, a tame stack is a stack X for which the orders of the (finite,
by Remark 2.1) automorphism groups of its points are coprime to char k; otherwise, X is
said to be a wild stack.

2.2 Quotients

Quotients provide one of the most common examples of a stack.

Example 2.2. Let X be a smooth, projective k-scheme, where k is a field. For a smooth
group scheme G ⊆ Aut(X), the quotient stack [X/G] is defined to be the CFG over Schk
whose objects are triples (T, P, π), where T ∈ Schk, P is a G×k T -torsor for the étale site Tét

and π : P → X ×k T is a G×k T -equivariant morphism. Morphisms (T ′, P ′, π′)→ (T, P, π)
in [X/G] are given by compatible morphisms of k-schemes ϕ : T ′ → T and G ×k T ′-torsors
ψ : P ′ → ϕ∗P such that ϕ∗π ◦ ψ = π′. This is often summarized by the diagram

P X

T [X/G]

π

.

Proposition 2.3. If G ⊆ Aut(X) is a finite group scheme, then [X/G] is a Deligne–
Mumford stack with étale presentation X → [X/G] and coarse moduli space X/G. More
generally, [X/G] is an algebraic stack which is Deligne–Mumford if and only if for every
geometric point x̄ : Spec k → [X/G], the automorphism group Gx̄ is an étale group scheme
over k.

Proof. See [Ols, 8.1.12 and 8.4.2].

Lemma 2.4. Let X be a stacky curve over a field k with coarse moduli space π : X → X
and fix a geometric point x̄ : Spec k → X with automorphism group Gx̄. Then there is an
étale neighborhood U → X of x := π ◦ x̄ and a finite morphism of schemes V → U such that
Gx̄ acts on V and X ×X U ∼= [V/Gx̄] as stacks.

Proof. See [Ols, 11.3.1].

This says that that every stacky curve X is, étale locally, a quotient stack [U/G], and
G may be taken to be the automorphism group of a geometric point of X , hence a finite
group. It follows from ramification theory [Ser2, Ch. IV] (see also Section 3.3) that when X
is tame, every automorphism group of X is cyclic. As a result, tame stacky curves can be
completely described by their coarse space, together with a finite list of stacky points (points
with nontrivial automorphism groups) and the orders of their automorphism groups.

In contrast, if X is wild, it may have noncyclic – even nonabelian! – automorphism
groups, coming from higher ramification data (again, see Section 3.3). The main goal of this

7



2.3 Normalization for Stacks

article is to describe how wild stacky curves can still be classified by specifying data on their
coarse space.

The following result will be used later to construct isomorphisms between stacks.

Lemma 2.5. If F : X → Y is a functor between categories fibred in groupoids over SchS,
then F is an equivalence of categories fibred in groupoids if and only if for each S-scheme
T , the functor FT : X (T )→ Y(T ) is an equivalence of categories.

Proof. This is a special case of [SP, Tag 003Z].

In Section 4, we will study towers of quotient stacks, for which we will make use of the
following result.

Lemma 2.6. Let G be a group scheme acting on a scheme X as in Example 2.2 and let
H ⊆ G be a normal subgroup scheme. Then [X/G] ∼= [[X/H]/(G/H)].

Proof. By Lemma 2.5, it’s enough to check the isomorphism on groupoids [X/G](T ) ∼=
[[X/H]/(G/H)](T ). At this level, the isomorphism is the identity on torsors P and identifies
the morphisms P → X×k T and P → [X/H]×k T via any fixed isomorphism between G(T )
and H(T )× (G/H)(T ).

2.3 Normalization for Stacks

In this section, we recall the notions of normalization and relative normalization for stacks,
following [Kob, Sec. 3]; see also [AB, Appendix A].

Definition 2.7. Let X be a locally noetherian algebraic stack over S. Then X is normal
if there is a smooth presentation U → X where U is a normal scheme. The relative
normalization of X is an algebraic stack X ν and a representable morphism of stacks X ν →
X such that for any smooth morphism U → X where U is a scheme, U ×X X ν is the relative
normalization of U → S.

Lemma 2.8 ([AB, Lem. A.5]). For a locally noetherian algebraic stack X , the relative nor-
malization X ν is uniquely determined by the following two properties:

(1) X ν → X is an integral surjection which induces a bijection on irreducible components.

(2) X ν → X is terminal among morphisms of algebraic stacks Z → X , where Z is normal,
which are dominant on irreducible components.

Definition 2.9. Let X ,Y and Z be algebraic stacks and suppose there are morphisms Y → X
and Z → X . Define the normalized pullback Y ×νX Z to be the relative normalization of
the fibre product Y ×X Z.

As in [Kob], we will write the normalized pullback as a diagram

Y ×νX Z Z

Y X

ν
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3 Artin–Schreier–Witt Theory and Cyclic Covers

In [Kob], the author’s construction of the Artin–Schreier root stack solves the problem of
taking pth roots of line bundles on a stacky curve in characteristic p > 0, but one may want
to compute roots of a line bundle of arbitrary order (and we will see there is good motivation
for this). There is a natural generalization of the Artin–Schreier theory of cyclic Z/pZ-covers
called Artin–Schreier–Witt theory which will allow us to take pnth roots of line bundles for
n > 1. We give the basic outline of the theory in this section.

3.1 Artin–Schreier Theory

Suppose k is a field of characteristic p > 0 and L/k is a Galois extension with group G =
Z/pnZ. When n = 1, we saw that such extensions are all of the form L = k[x]/(xp − x− a)
for some a ∈ k, with isomorphism classes of extensions corresponding to the valuation v(a).
When n = 2, write L/k as a tower L ⊇ M ⊇ k, where L/M and M/k are both Galois
extensions with group Z/pZ. Then by Artin–Schreier theory,

M = k[x]/(xp − x− a) and L = M [z]/(zp − z − b)

for a ∈ kr ℘(k) and b ∈M r ℘(M) – here, ℘ denotes the map c 7→ cp− c. It turns out (see
[OP]) that the extension L/k itself can be defined by the equations

yp − y = x and zp − z =
xp + yp − (x+ y)p

p
+ w

where both x and w lie in k. Compare this to a Z/pZ×Z/pZ-extension, which can be written
as a tower of Z/pZ-extensions in multiple ways. The fact that L/k is cyclic is reflected in the
above equations defining the extension. To see this explicitly, suppose H = Gal(M/k) ∼= 〈σ〉
where |σ| = p. Then σ acts on M = k[x]/(xp − x − a) via σ(x) = x + 1. Moreover, σ
generates G = Gal(L/k) if and only if

k[y, z]/(zp − z − b) = k[y, z]/(zp − z − σ(b))

which in turn is equivalent to having σ(b) = b+ ℘(b′) for some b′ ∈M . It’s easy to see that
when L/k is Galois of order p2 and factors as the tower above, then σ(b) ≡ b mod ℘(M)
occurs precisely when G ∼= Z/pZ×Z/pZ, while σ(b) 6≡ b mod ℘(M) coincides with the case
G ∼= Z/p2Z.

3.2 Artin–Schreier–Witt Theory

For a general cyclic extension of order pn, Artin–Schreier–Witt theory and the arithmetic of
Witt vectors encode the above automorphism data in a systematic way. The basic theory
can be found in various places, including [Lan, p. 330]. For a commutative ring A, we define
the set of big Witt vectors over A to be simply the set of sequences of elements of A:

Wbig(A) = {(a1, a2, a3, . . .) | an ∈ A}.
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This is obviously functorial, so we have defined a functor Wbig : Ring→ Set. We next define
a ring structure on each Wbig(A). For a Witt vector a = (an) ∈ Wbig(A), an associated
sequence (a(n)) of ghost components (composantes fantômes in French) is defined by setting

a(n) = ap
n

0 + pap
n−1

1 + . . .+ pnan =
n∑
i=0

piap
n−i

i .

If A contains Q, then the association of a Witt vector to its sequence of ghost components is
bijective, but this is not true in general. Explicitly, the Witt vector associated to a sequence
of ghost components (a(n)) is given by

a0 = a(0) and an =
1

pn
a(n) −

n−1∑
i=0

1

pn−i
ap

n−i

i .

In the case when Q ⊆ A, we may define addition and multiplication operations on Wbig(A)
by taking a+ b (resp. ab) to be the Witt vector whose nth ghost component is (a+ b)(n) =
a(n) + b(n) (resp. (ab)(n) = a(n)b(n)). Set R = Q[X0, X1, . . . ;Y0, Y1, . . .] and consider the Witt
vectors X = (X0, X1, . . .) and Y = (Y0, Y1, . . .) in Wbig(R). Put

Sn(X0, . . . , Xn;Y0, . . . , Yn) := (X + Y )n and Pn(X0, . . . , Xn;Y0, . . . , Yn) := (XY )n.

Lemma 3.1. For each n ≥ 1, Sn and Pn are polynomials in X0, . . . , Xn and Y0, . . . , Yn with
integer coefficients.

Proof. (Sketch) For any a = (an) ∈Wbig(A), define a power series

fa(t) =
∞∏
n=1

(1− antn).

Then the standard and ghost components of a are related as follows:

−t d
dt

log fa(t) =
∞∑
n=1

a(n)tn.

Using this, one can show that fX(t)fY (t) = fX+Y (t) and, with slightly more work, that

fXY (t) =
∞∏
d=0

∞∏
e=0

(1−Xm−d
d Y m−e

e tm)d+e−m

where m = gcd(d, e). These then imply that Sn and Pn have integer coefficients.

Thus the definitions of addition and multiplication of Witt vectors can be extended
to Z[X0, X1, . . . ;Y0, Y1, . . .] and indeed any subring of a ring containing Q. Finally, for
an arbitrary commutative ring A, fix a = (an), b = (bn) ∈ Wbig(A), let ϕa,b be the ring
homomorphism

ϕa,b : Z[X0, X1, . . . ;Y0, Y1, . . .] −→ A

Xn 7−→ an

Yn 7−→ bn,
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and define the addition and multiplication of a and b by

a+ b = W (ϕa,b)(X + Y ) and ab = W (ϕa,b)(XY ).

Under these operations, Wbig(A) is a ring with zero element (0, 0, 0, . . .) and unit (1, 0, 0, . . .),
and Wbig : Ring → Ring is a functor. Furthermore, it is easy to check using the above de-
scription of Witt vector addition that Wbig(A) is always a ring of characteristic 0. Therefore
Wbig(A) 6∼= AN in general.

Now assume for the rest of the section that k is a field of characteristic p > 0 and A is
a k-algebra. We make the following change in notation: for each n ≥ 0, replace apn with
an and write a = (a0, a1, a2, . . .) for the sequence of pth power components of the original
Witt vector. Call W(A) the set of Witt vectors over A with this new numbering convention.
This has a different structure than Wbig(A), but it is clear that the ghost components of

a = (a0, a1, a2, . . .) are still given by a(n) = ap
n

0 + pap
n−1

1 + . . . + pnan. Moreover, the Witt
vector arithmetic defined above still defines a ring structure on W(A).

Remark 3.2. In the literature, the original Wbig(A) is referred to as the ring of big Witt
vectors, while the latter construction W(A) with indices shifted is called the ring of p-typical
Witt vectors, sometimes denoted Wp∞ for emphasis. We will only make use of the ring of
p-typical Witt vectors and choose to denote it W.

For each n ≥ 1, let Wn(A) be the set of Witt vectors of length n over A, i.e. the image
of the ring homomorphism

tn : W(A) −→W(A)

(a0, . . . , an−1, an, an+1, . . .) 7−→ (a0, . . . , an−1, 0, 0, . . .).

We write an element of Wn(A) as (a0, . . . , an−1). The Verschiebung operator defined by
V : W(A) → W(A), (a0, a1, . . .) 7→ (0, a0, a1, . . .) is an abelian group homomorphism, and
moreover, Wn(A) ∼= W(A)/V nW(A) where V n = V ◦ · · · ◦ V︸ ︷︷ ︸

n

. The following results are

standard.

Lemma 3.3. The Verschiebung satisfies:

(a) Each a = (an) ∈W(A) can be written a =
∑∞

n=0 V
n{an} where {x} = (x, 0, 0, . . .).

(b) For a = (an) ∈W(A) and b = (0, . . . , 0, bn, bn+1, . . .) ∈ V nW(A),

a+ b = (a0, . . . , an−1, an + bn, an+1 + bn+1, . . .).

(c) u ∈W(A) is a unit if and only if u0 is a unit in A.

Next, define the Frobenius operator F : W(A) → W(A) by (a0, a1, . . .) 7→ (ap0, a
p
1, . . .).

Then F is a ring homomorphism which satisfies several important properties.

Lemma 3.4. For a = (a0, a1, . . .) ∈W(A),

(a) FV a = V Fa = pa.

11



3.2 Artin–Schreier–Witt Theory

(b) (V a)(n) = pa(n−1).

(c) a(n) = (Fa)(n−1) + pnan.

(d) For all i, j ≥ 0 and b ∈W(A), (V ia)(V jb) = V i+j(F pjaF pib).

Consider the ring of length n Witt vectors Wn(k). For x ∈ Wn(k), set ℘x = Fx − x.
Then ℘ is an abelian group homomorphism Wn(k)→Wn(k) and there is an exact sequence

0→ Z/pnZ i−→Wn(k)
℘−→Wn(k)→ 0

where i is the inclusion x 7→ {x}. Let L/k be a Galois extension with Galois group G. Then
G acts on Wn(L) via σ · (x0, . . . , xn−1) = (σ(x0), . . . , xn−1). One can mimic the classical
proof of Hilbert’s Theorem 90 to prove the following version for Artin–Schreier–Witt theory.

Theorem 3.5 (Hilbert’s Theorem 90). For a Galois extension L/k of fields of characteristic
p > 0 with Galois group G, H1(G,Wn(L)) = 0 for all n ≥ 1.

Example 3.6. When k = Fp, the field of p elements, we have an isomorphism

Wn(Fp) −→ Z/pnZ
(x0, x1, . . . , xn−1) 7−→ x̄0 + px̄1 + . . .+ pn−1x̄n−1

for all n ≥ 1, where x̄i denotes the image of xi under the canonical surjection Z/pZ→ Z/pnZ.
These commute with the natural maps Z/pnZ→ Z/pn+1Z, giving an isomorphism

W(Fp)
∼−→ lim

←−
Z/pnZ = Zp.

This was one of the original motivations for the construction of W: as a way to give a
canonical lift of a ring in characteristic p > 0 to a ring in characteristic 0, just as the p-adic
integers do for each finite ring Z/pnZ. Furthermore, the natural profinite topology on Zp
induces a topological ring structure on W(Fp) under which all of the previous maps in this
section are continuous. Moreover, explicitly describing this topology allows one to write
down a topology on W(A) for any ring A.

Suppose x ∈ Wn(k) and α ∈ Wn(ksep) are Witt vectors such that ℘(α) = x. If α =
(α0, . . . , αn−1), we write k(℘−1x) = k(α0, . . . , αn−1) as a field extension of k. The following
theorem fully characterizes cyclic extensions of degree pn of k.

Theorem 3.7. Let k be a field of characteristic p > 0. Then for each n ≥ 1, there is a
bijection {

cyclic extensions L/k with
[L : k] = pn

}
←→Wn(k)/℘(Wn(k))

L = k(℘−1x)←→ x.

12



3.3 Ramification Data

Proof. (Sketch) Suppose α ∈Wn(ksep) is a root of the Witt vector-valued polynomial ℘x−a,
where a ∈ Wn(k) is not of the form a = ℘b for any b ∈ Wn(k). Then all roots of ℘x − a
are given by α, α + 1, . . . , α + (pn − 1)1 where 1 denotes the unit Witt vector (1, 0, 0, . . .).
In particular, this shows that k(℘−1x)/k is Galois and Gal(k(℘−1x)/k) = {1, σ, . . . , σpn−1}
where σi(α) = α + i1 for each 0 ≤ i ≤ pn − 1. Therefore k(℘−1x)/k is cyclic of order pn.

Conversely, suppose L/k is cyclic of order pn with Galois group G = 〈τ〉. Applying Galois

cohomology to the short exact sequence 0→ Z/pnZ −→Wn(L)
℘−→Wn(L)→ 0 yields a long

exact sequence

0→ Z/pnZ→Wn(k)
℘−→Wn(k)

ϕ−→ H1(G,Z/pnZ)→ H1(G,Wn(L)) = 0

with the last zero coming from Hilbert’s Theorem 90. The map ϕ sends y to the cocycle
ξ : σ 7→ σβ − β where ℘β = y. Since G acts trivially on Wn(Fp), we have H1(G,Z/pnZ) =
Hom(G,Z/pnZ) ∼= End(Z/pnZ) ∼= Z/pnZ. Let x ∈ Wn(k) be a Witt vector such that ϕx
generates H1(G,Z/pnZ). One finishes by showing that L = k(℘−1x).

Alternatively, any cyclic extension L/k with Galois group G ∼= Z/pnZ can be given by a
system of equations

ypi − yi = fi(f0, . . . , fi−1; y0, . . . , yi−1) for 0 ≤ i ≤ n− 1

where f0 ∈ k and each fi is a polynomial over k. This follows from Artin–Schreier theory
and the fact that a cyclic Z/pnZ-extension can be written as a tower of Z/pZ-extensions in
a unique way.

3.3 Ramification Data

Suppose k is a complete local field of characteristic p. Then k ∼= k0((t)) for an algebraically
closed field k0 and the Galois theory of k can be described by filtering the Galois group
G = Gal(L/k) of any separable extension according to liftings of the t-adic valuation to L. In
particular, let Ok be the valuation ring of k, or equivalently, the subring of k corresponding to
k0[[t]]. It contains a prime ideal pk corresponding to (t) ⊂ k0[[t]]. For any separable extension
L/k, let OL be the valuation ring of L, which can be defined as the integral closure of Ok in
L. The unique prime ideal lying over pk will be denoted PL.

The Galois group G contains subgroups

I = {σ ∈ G : σ(x) ≡ x mod PL for all x ∈ OL},

called the inertia group of L/k, and

R =

{
σ ∈ G :

σ(x)

x
≡ 1 mod PL for all x ∈ L×

}
,

called the ramification group. These form the start of a filtration of the Galois group:
G ⊇ I ⊇ R. For each i ≥ 0, define

Gi = {σ ∈ G : vL(σ(x)− x) ≥ i+ 1 for all x ∈ OL},

13



3.3 Ramification Data

where vL denotes the unique extension of the t-adic valuation to L. Then G0 = I,G1 = R
and we get a filtration of G by normal subgroups:

G ⊇ G0 ⊇ G1 ⊇ G2 ⊇ · · ·

This is called the ramification filtration in the lower numbering for G; it terminates in a
finite number of steps. If Gm ) Gm+1, m is called a jump in the ramification filtration. It
is known [Ser2, Ch. IV] (and see Proposition 3.8 below) that G0 is a semidirect product of
the form P o Z/rZ, where P is a p-group, say of order pn, and r is prime to p. Moreover,
G1 is the unique Sylow p-subgroup of G0, so there are exactly n jumps in the ramification
filtration.

A parallel filtration of G can be defined as follows. Define a function ϕ = ϕL/k : [0,∞)→
[0,∞) by

ϕ(i) =
1

|G0|
(|G1|+ . . .+ |Gm|+ (i−m)|Gm+1|)

for m ∈ Z with m ≤ i ≤ m+ 1. (This is usually written as an integral; see loc. cit.) Define
the ramification filtration in the upper numbering for G by

G ⊇ G0 ⊇ G1 ⊇ G2 ⊇ · · ·

where Gj = Gi for j = ϕ(i). An easy formula for translating between the extensions is due
to Herbrand [Ser2, Ch. IV]: if m0 = u0 = 0 and for k ≥ 1, mk (resp. uk) are the ramification
jumps in the lower (resp. upper) numbering, then

uk − uk−1 =
1

pk−1r
(mk −mk−1).

The filtration in the upper numbering is compatible with quotients of G (subextensions
of L/k), whereas the filtration in the lowering numbering is only compatible with subgroups
of G. However, the jumps in the upper numbering need not be integers, though they are
when G is abelian [Ser2, Ch. V, Sec. 7].

Here are some useful facts about the ramification filtrations of G = Gal(L/k).

Proposition 3.8 ([Ser2, Ch. IV], [OP, Prop. 4.2]). For a Galois extension L/k with group
G,

(a) G0
∼= P o Z/rZ where P is a finite p-group and r is prime to p.

(b) G0/G1 is cyclic of order r.

(c) G1 is the Sylow p-group of G0.

(d) For each i ≥ 1, the quotient Gi/Gi+1 is a direct product of cyclic groups of order p.

(e) The jumps in the lower numbering are congruent mod r.

(f) The jumps in the upper numbering are congruent mod r.

14



4 Artin–Schreier–Witt Root Stacks

We now turn to cyclic p-extensions. By Theorem 3.7, any Z/pnZ-extension L/k is of the
form L = k(℘−1x) for some Witt vector x = (x0, x1, . . . , xn−1) ∈ Wn(k). Set mi = −v(xi)
for 0 ≤ i ≤ n− 1.

Theorem 3.9. The last jump in the ramification filtration in the upper numbering for G =
Gal(L/k) is u = max{pn−imi}n−1

i=0 .

Proof. This follows from [Gar, Thm. 1.1]. A proof using local class field theory can be found
in [Tho, Sec. 5].

Therefore the ramification filtration (either in the upper or lower numbering) of a cyclic
Z/pnZ-extension of complete local fields can be determined completely by its Witt vector
equation. For further reading, in the last section of [OP] the authors provide explicit equa-
tions describing Z/p3Z-equations of k((t)).

4 Artin–Schreier–Witt Root Stacks

Let k be a field of characteristic p > 0 and let L/k be Galois extension with Galois group
G = Z/pnZ for some n ≥ 1. By Theorem 3.7, such an extension is of the form

L = k[x]/(℘x− a)

where x = (x0, . . . , xn−1) is an indeterminate taking values in the ring of length n Witt
vectors Wn(k) and a ∈ Wn(k) is not of the form a = ℘b for any b ∈ Wn(k). For n = 1, ℘
is the just map α 7→ αp − α, used in [Kob, Sec. 6] to construct the universal Artin–Schreier
covers

℘m : [P(1,m)/Ga] −→ [P(1,m)/Ga].

These were used to define Artin–Schreier root stacks, the wild Z/pZ analogue of tame root
stacks. See Section 4.1 for a brief review.

To study higher order wild root stacks, we will replace the quotient stack [P(1,m)/Ga]
with [Wn(1,m1, . . . ,mn)/Wn], where Wn(1,m1, . . . ,mn) is a new stacky equivariant com-
pactification of Wn equal to P(1,m) in the n = 1 case. This stacky compactification is built
on a compactification Wn of Wn in the category of schemes, due to Garuti [Gar], which we
describe in Section 4.2.

4.1 Artin–Schreier Root Stacks

Fix a prime p and an integer m ≥ 1. As above, the universal Artin–Schreier cover for this
pair (p,m) is the morphism

℘m : [P(1,m)/Ga] −→ [P(1,m)/Ga]

induced by the compatible maps [u : v] 7→ [up : vp − vum(p−1)] on P(1,m) and α 7→ αp − α
on Ga. Locally, points of [P(1,m)/Ga] are triples (L, s, f), where L is a line bundle, s is a
section of L and f is a section of Lm, with disjoint zero sets. Pulling back along ℘m takes
an Artin–Schreier root of the triple (L, s, f) as follows. For a scheme X and a triple (L, s, f)
corresponding to a map X → [P(1,m)/Ga], the Artin–Schreier root of X over div(s) with
jump m is the normalized pullback
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4.2 Garuti’s Compactification

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

℘m
ν

Properties of this construction are summarized below; see [Kob, Sec. 6].

Proposition 4.1. Let X be a scheme and (L, s, f) be a triple on X corresponding to a
morphism X → [P(1,m)/Ga]. Then

(a) Artin–Schreier roots are functorial. That is, for any morphism ϕ : Y → X, there is
an isomorphism of stacks

℘−1
m (ϕ∗(L, s, f)/Y ) ∼= ℘−1

m ((L, s, f)/X)×νX Y.

(b) If X is a scheme over a perfect field k, ℘−1
m ((L, s, f)/X) is a Deligne–Mumford stack

with coarse space X.

(c) Locally in the étale topology, ℘−1
m ((L, s, f)/X) is isomorphic to a quotient of the form

[V/G] where G = Z/pZ and V is an Artin–Schreier cover of (an étale neighborhood
of) X.

4.2 Garuti’s Compactification

For a vector bundle E → X, let P(E) → X denote the projective bundle associated to E,
that is, P(E) = ProjX(Sym(E∨)). This comes equipped with a tautological bundle OP(1).
Set OP(m) = OP(1)⊗m for any m ∈ Z, where OP(−1) = OP(1)∨ by convention.

Following [Gar], we define a sequence of ringed spaces (Wn,OWn
(1)) inductively by

(W1,OW1
(1)) = (P1,OP1(1))

and (Wn,OWn
(1)) = (P(OWn−1

⊕OWn−1
(p)),OP(1)) for n ≥ 2,

where OP(1) is the tautological bundle of the projective bundle in that step. There is a
morphism

r : Wn −→Wn−1

for all n ≥ 1 exhibiting Wn as a P1-bundle over Wn−1. Note that r∗OWn
(1) = OWn−1

⊕
OWn−1

(p). For each n ≥ 2, there is a canonical section of r corresponding to the zero section

of the bundle P(OWn−1
⊕OWn−1

(p)) over Wn−1. Let Zn be the divisor associated to the zero
locus of this section. On the other hand, the isomorphism

P(OWn−1
⊕OWn−1

(p)) ∼= P(OWn−1
(−p)⊕OWn−1

)

induces another section of r, called the “infinity section”, whose divisor (aka zero locus) we
denote by Σn.
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4.2 Garuti’s Compactification

Proposition 4.2 ([Gar, Prop. 2.4]). There is a system of open immersions jn : Wn ↪→Wn

such that jn(Wn) = Wn rBn where Bn is the zero locus of a section of OWn
(1), given by

B1 = Σ1 and Bn = Σn + pr∗Bn−1 for n ≥ 2.

Corollary 4.3 ([Gar, Cor. 2.5]). For all n ≥ 2,

Bn =
n∑
i=1

pn−i(rn−i)∗Σi.

We next observe that Wn is a compactification of Wn which is equivariant with respect
to the action of Wn on itself.

Lemma 4.4 ([Gar, Lem. 2.7]). Let OWn
(1) be the tautological bundle on Wn. Then

(1) OWn
(1) is generated by global sections.

(2) For any m ≥ 0, there is an isomorphism of rings

H0(Wn,OWn
(m))

∼−→ Symm(Hpn−1)

where Hd denotes the dth graded piece of the graded ring

H = Fp[t, y0, y1, . . . , ].

(3) Under this isomorphism, Yn−1 and T p
n−1

define principal divisors

(Yn−1) =
∑

aPP and (T p
n−1

) =
∑

bPP

such that
∑

aP≥0 aPP = Zn and
∑

bP≥0 bPP = Bn.

This allows us to construct the action of Wn on Wn.

Proposition 4.5. The action of Wn on itself by Witt-vector translation extends to an action
on Wn which stabilizes OWn

(1).

Proof. (Sketch) For n = 1, the translation action of W1 = Ga on itself by λ·x = x+λ extends
to an action on P1 = W1 by λ · [x, y] = [x + λy, y]. Since this fixes ∞ = [1 : 0], the action
stabilizes O(1) = O(1 · ∞). The general case is proved by induction [Gar, Prop. 2.8].

Proposition 4.6. The isogeny ℘ : Wn →Wn extends to a cyclic cover of degree pn,

Ψn : Wn −→Wn

which is defined over Fp, commutes with the maps r : Wn →Wn−1 and has branch locus Bn,
with Ψ∗nBn = pBn.

Proof. (Sketch) The n = 1 case is well-known and is also outlined in [Kob, Sec. 6]. To induct,
consider the fibre product
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4.3 Artin–Schreier–Witt Root Stacks

P Wn+1

Wn Wn

π

q r

Ψn

Then π : P →Wn+1 is a cyclic pn-cover given explicitly by

P = P(OWn
,OWn

(p2))

since Ψ∗nBn = pBn and OP(Bn) = OWn
(p). Using Lemma 4.4, it is possible to construct a

finite, flat morphism
ϕ : Wn+1 −→ P

over Wn. This defines Ψn+1 as the composition

Ψn+1 : Wn+1
ϕ−→ P

π−→Wn+1

which is then finite, flat and extends ℘ : Wn+1 →Wn+1 by construction. It is easy to check
(cf. [Gar, Prop. 2.9]) that the Ψn and r commute. Finally, (3) of Lemma 4.4 tells us that
Bn+1 is the effective part of the principal divisor (tp

n
), so Ψ∗n+1Bn = pBn+1 follows from the

fact that Ψ∗1(t) = (tp).

Remark 4.7. By construction, W2 can be identified with the Hirzebruch surface Fp. More
generally, the sequence of Wn form a Bott tower [GK]. In particular, each Wn is a smooth,
projective toric variety [CS].

4.3 Artin–Schreier–Witt Root Stacks

Next we turn to the construction of the stacky compactification Wn(1,m1, . . . ,mn) of the
Witt scheme Wn for n > 1. We begin by setting W1(1,m) := P(1,m), our stacky compacti-
fication of W1 = A1. The key insight for generalizing this is to use the fact [Kob, Lem. 6.3]
that P(1,m) is itself a root stack over P1:

P(1,m) [A1/Gm]

P1 [A1/Gm]

m

(OP1(1),Σ1)

Pulling back P(1,m) = W1(1,m) along the sequence

· · · →W3
r−→W2

r−→W1 = P1

defines Wn(1,m, 1, . . . , 1) for each n > 1. Each of these is a root stack over Wn with stacky
structure at (the pullback of) Σ1; for example, W2(1,m, 1) = r∗W1(1,m) is a root stack over
W2:
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4.3 Artin–Schreier–Witt Root Stacks

W2(1,m, 1) [A1/Gm]

W2 [A1/Gm]

m

(r∗OP1(1), r∗Σ1)

For a pair of positive integers (m1,m2), the compactification W2(1,m1,m2) of W2 is defined

by a second root stack, W2(1,m1,m2) := m2

√
(O(1),Σ2)/W2(1,m1, 1):

W2(1,m1,m2) [A1/Gm]

W2(1,m1, 1) [A1/Gm]

m2

(O(1),Σ2)

Here, O(1) denotes the pullback of the line bundle OW2
(1) to W2(1,m1, 1) along the coarse

map. Now we proceed inductively. Let n ≥ 2.

Definition 4.8. For a sequence of positive integers (m1, . . . ,mn), define the compactified

Witt stack Wn(1,m1, . . . ,mn) to be the root stack mn

√
(O(1),Σn)/Wn(1,m1, . . . ,mn−1, 1):

Wn(1,m1, . . . ,mn) [A1/Gm]

Wn(1,m1, . . . ,mn−1, 1) [A1/Gm]

mn

(O(1),Σn)

where Wn(1,m1, . . . ,mn−1, 1) = r∗Wn−1(1,m1, . . . ,mn−1) is the pullback along r of the com-
pactified Witt stack Wn−1(1,m1, . . . ,mn−1) over Wn−1, and O(1) is pulled back inductively
as explained above.

We will continue to abuse notation by writing r for the natural projections

Wn(1,m1, . . . ,mn)→Wn−1(1,m1, . . . ,mn−1).

Proposition 4.9. For each n ≥ 1, the cyclic pn-cover Ψn : Wn →Wn extends to a morphism
of stacks

Ψ = Ψm1,...,mn : W(m1, . . . ,mn)→W(m1, . . . ,mn)

which commutes with r : W(m1, . . . ,mn)→W(m1, . . . ,mn−1) and satisfies Ψ∗Bn = pBn.

Proof. For n = 1, Ψ1 : P1 → P1 is the extension of ℘(x) = xp−x from A1 to P1. As explained
in [Kob, Sec. 6], this extends naturally to W1(1,m) = P(1,m) as [x, y] 7→ [xp, yp− yxm(p−1)].
Then by construction Ψ∗Σ1 = pΣ1. To induct, suppose Ψ : Wn−1(1,m1, . . . ,mn−1) →
Wn−1(1,m1, . . . ,mn−1) has been constructed. Then pulling back along r extends Ψ to a
cover Wn(1,m1, . . . ,mn−1, 1) → Wn(1,m1, . . . ,mn−1, 1). Since the root stack construction
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4.3 Artin–Schreier–Witt Root Stacks

commutes with pullback (cf. [Cad, Rem. 2.2.3] or [Kob, Lem. 5.10]), this induces a morphism
Ψ : Wn(1,m1, . . . ,mn) → Wn(1,m1, . . . ,mn). By construction this commutes with r :
Wn(1,m1, . . . ,mn)→Wn−1(1,m1, . . . ,mn−1) and we can compute

Ψ∗Bn = Ψ∗(Σn + pr∗Bn−1) by Proposition 4.2

= Ψ∗Σn + pr∗(Ψ∗Bn−1) since Ψ and r commute

= pΣn + pr∗(pBn−1) by induction

= p(Σn + pr∗Bn−1) = pBn.

Next, we prove a generalization of [Kob, Prop. 6.4] that describes the T -points of the
stack Wn(1,m1, . . . ,mn) for any scheme T in terms of line bundles on T and their sections.
First, we reinterpret Wn(1,m1, . . . ,mn) as a quotient stack.

Lemma 4.10. For each n ≥ 2 and any sequence of positive integers (m1, . . . ,mn), the
compactified Witt stack is a quotient stack:

Wn(1,m1, . . . ,mn) = [Vn r {0}/Gm]

where Vn is the total space of a rank 2 vector bundle En on Wn−1(1,m1, . . . ,mn−1) and Gm

acts on Vn with weights (1,mn).

Proof. (Sketch) First consider the case when m1 = · · · = mn = 1, that is Wn(1, 1, . . . , 1) =
Wn. By definition, Wn = P(En) where En = OWn−1

⊕ OWn−1
(p). For any vector bundle E

on X, the projective bundle P(E) can be presented as a quotient stack

P(E) = [V r {0}/Gm]

where V = Sym(E∗) is the total space of E and Gm acts on V by scalar multiplication. This
finishes the description in the unweighted case.

For the general case, the rank 2 vector bundle is

En = OWn−1(1,m1,...,mn−1) ⊕OWn−1(1,m1,...,mn−1)(p)

with total space Vn, and P(En) is replaced by a weighted relative Proj, with weights (1,mn).
In this case the weighted relative Proj is identified with the quotient P(En) = [Vnr{0}/Gm]
where Gm acts on Vn with weights (1,mn).

Recall [Kob, Prop. 6.4] that for each m ≥ 1, a morphism into the weighted projective
stack P(1,m) are equivalent to the data of a triple (L, s, f) consisting of a line bundle L, a
section s of L and another section f of L⊗m such that s and f do not vanish simultaneously.

For two weightsm,n ≥ 1, consider the compactified Witt stack W2(1,m, n). To generalize
[Kob, Prop. 6.4], let Div[1,m,n] be the category fibred in groupoids whose objects are tuples
(T, L, s, f, g), where T is a scheme, L is a line bundle on T , s ∈ H0(T, L), f ∈ H0(T, Lm) not
vanishing simultaneously with s, and g ∈ H0(T, Ln), also not vanishing simultaneously with
s. Morphisms are compatible morphisms of line bundles taking sections to sections. Then
Div[1,m,n] ∼= W2(1,m, n), as explained below.
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4.3 Artin–Schreier–Witt Root Stacks

Starting with the case m = n = 1, we have W2 = P(E2), where E2 = OP1 ⊕ OP1(p)
by definition. By the universal property of this Proj bundle, a morphism T → W2 is
determined by a map T

ϕ−→ P1 (hence a triple (L, s, f)) and a subbundle L ⊆ ϕ∗E2, which in
turn determines a section g = ϕ∗s0 of L. In other words, g is determined by the divisor Σ2

in W2.
For any weights m,n ≥ 1, [Kob, Prop. 6.4] shows that P(1,m) can be identified with

Div[1,m], the stack of tuples (T, L, s, f). Thus there is a forgetful morphism Div[1,m,n] →
Div[1,m] ∼= P(1,m). Pulling things back to W2 along r, we see that W2(1,m, 1) can similarly
be identified with Div[1,m,1] – with the second section coming from Σ2 as above. Finally,
W2(1,m, n) is defined as a root stack over W2(1,m, 1) along this divisor Σ2, with weight
n. Then [Kob, Prop. 5.3] allows us to identify W2(1,m, n) with Div[1,m,n]. Explicitly, for
ϕ : T → W2(1,m, n), the tuple (L, s, f, g) is given by L = ϕ∗O(1), s = ϕ∗r∗[0 : 1], f =
ϕ∗r∗[1 : 0] and g = ϕ∗Σ2. This is summarized in the following commutative diagram, in
which the square is cartesian.

W2 P1

W2(1,m, 1)Div[1,m,1] ∼= P(1,m) ∼= Div[1,m]

W2(1,m, n)Div[1,m,n] ∼=

r

r

Now we turn to the general case. For a sequence of positive integers m1, . . . ,mn and a
scheme T , let Div[1,m1,...,mn](T ) be the category whose objects are tuples (L, s, f1, . . . , fn) with
L a line bundle on T , s ∈ H0(T, L) and fi ∈ H0(T, Lmi) for each 1 ≤ i ≤ n that don’t vanish
simultaneously with s. Morphisms (L, s, f1, . . . , fn)→ (L′, s′, f ′1, . . . , f

′
n) in Div[1,m1,...,mn](T )

are given by bundle isomorphisms ϕ : L→ L′ taking s 7→ s′ and fi 7→ f ′i . Then Div[1,m1,...,mn]

is a category fibred in groupoids over Schk. The proof in the n = 2 case above generalizes
easily to show:

Proposition 4.11. For any m1, . . . ,mn ≥ 1, there is an isomorphism of categories fibred in
groupoids

Div[1,m1,...,mn] ∼= Wn(1,m1, . . . ,mn).

Corollary 4.12. For any m1, . . . ,mn ≥ 1, Div[1,m1,...,mn] is a stack of dimension n.

Definition 4.13. Let X be a scheme, (m1, . . . ,mn) a sequence of positive integers and con-
sider a tuple (L, s, f1, . . . , fn) consisting of a line bundle L on X and sections s ∈ Γ(X,L) and
fi ∈ Γ(X,Lmi), 1 ≤ i ≤ n, which do not vanish simultaneously. The Artin–Schreier–Witt
root stack of X along (L, s, f1, . . . , fn) is the normalized pullback Ψ−1((L, s, f1, . . . , fn)/X )
of the diagram
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4.3 Artin–Schreier–Witt Root Stacks

Ψ−1((L, s, f1, . . . , fn)/X) [Wn(1,m1, . . . ,mn)/Wn]

X [Wn(1,m1, . . . ,mn)/Wn]

Ψ
ν

where Ψ is the cyclic degree pn morphism from Proposition 4.9 and the bottom row is induced
by (L, s, f1, . . . , fn), following Proposition 4.11.

As in [Kob, Sec. 6], this definition extends to a base which is a stack. For a stack X , set
Div[1,m1,...,mn](X ) = HomStacks(X ,Div[1,m1,...,mn]) and likewise set Wn(1,m1, . . . ,mn)(X ) =
HomStacks(X ,Wn(1,m1, . . . ,mn)).

Definition 4.14. For a stack X , a sequence of positive integers (m1, . . . ,mn) and a tuple
(L, s, f1, . . . , fn) ∈ Wn(1,m1, . . . ,mn)(X ), the Artin–Schreier–Witt root stack of X
along (L, s, f1, . . . , fn) is defined to be the normalized pullback Φ−1((L, s, f1, . . . , fn)/X ) of
the diagram

Ψ−1((L, s, f1, . . . , fn)/X ) [Wn(1,m1, . . . ,mn)/Wn]

X [Wn(1,m1, . . . ,mn)/Wn]

Ψ
ν

Remark 4.15. As in [Kob, Rmk. 6.10], we can interpret the T -points of an Artin–Schreier–
Witt root stack Ψ−1((L, s, f1, . . . , fn)/X) for “local enough” T : étale-locally, they are tuples

(ϕ,M, t, g1, . . . , gn, ψ) where T
ϕ−→ X is a morphism of schemes, M is a line bundle on T ,

Mpn ψ−→ ϕ∗L is an isomorphism of line bundles, t ∈ H0(T,M) and for each 1 ≤ i ≤ n,
gi ∈ H0(T,Mmi), all satisfying

ψ(tp
n

) = ϕ∗s and ψ(gpi − tmi(p−1)gi) = ϕ∗fi for 1 ≤ i ≤ n.

The global situation is a little more delicate than in loc. cit., so we take care to explain
it here. Let T be a normal scheme. For n = 1, the T -points of Ψ−1((L, s, f)/X) are
tuples (ϕ,M, t, g, ψ), this time with g ∈ H0(m1(t),Mm1 |m1(t)) a “local section”, or germ
at each point of the support of the divisor m1(t). Generalizing this, for any n, set Xi =
Ψ−1((L, s, f1, . . . , fi)/X), ηi : Xi → Xi−1 the canonical projection, and Di = η−1

i (t) for each
1 ≤ i ≤ n − 1. Then with T still normal, the T -points of Ψ−1((L, s, f1, . . . , fn)/X) are
(ϕ,M, t, g1, . . . , gn, ψ) with gi ∈ H0(mi−1Di−1,M

mi |Di−1
) and the rest as above. A concrete

example of this phenomenon can be found in Example 5.3. When T is not normal, things are
probably too complicated to write down generally. However, a higher order version of [Kob,
Ex. 6.13] is possible in theory, either by iterating the method described in [Kob, Rmk. 6.2]
(see also [LS, Lem. 5.5]) or by generalizing that result using Witt vectors. See also [Mad,
Sec. 2].
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5 Classification Theorems

5 Classification Theorems

In this section, we use the construction of Artin–Schreier–Witt root stacks to classify stacky
curves in positive characteristic with cyclic pth-power automorphism groups. This completes
the cyclic version of the program begun in [Kob]. For remarks on the general case, see
Section 8.

Lemma 5.1. Let h : Y → X be a morphism of stacks and (L, s, f1, . . . , fn) an object in
Div[1,m1,...,mn](X ). Then there is an isomorphism of algebraic stacks

Ψ−1((h∗L, h∗s, h∗f1, . . . , h
∗fn)/Y)

∼−→ Ψ−1((L, s, f1, . . . , fn)/X )×νX Y .

Proof. See [Kob, Lem. 6.11].

Example 5.2. Consider the smooth, projective Z/p2Z-cover Y of P1
k given birationally by

the Witt vector equation ℘x = (t−j, 0) where x = (x, y) ∈ W2(k̄) and p - j. On the level of
function fields, this corresponds to the tower of fields L ⊇ K ⊇ k((t)) with equations

xp − x = t−j (I)

yp − y = t−jx (II)

which has Galois groups G = Gal(L/k((t))) ∼= Z/p2Z, H = Gal(L/K) ∼= Z/pZ and G/H =
Gal(K/k((t))) ∼= Z/pZ. Let X be the smooth, projective curve with affine equation (I),

giving us a sequence of covers Y
ψ−→ X

ϕ−→ P1
k. By Theorem 3.9, the ramification jumps in

the upper numbering are j and pj. If P1
k = Proj k[x0, x1], [Kob, Ex. 6.12] shows that the

quotient stack X := [X/(G/H)] is an Artin–Schreier root stack over the point [0 : 1] ∈ P1
k

with jump j:

X = [Y/(G/H)] ∼= ℘−1
j ((O(1), x0, x

j
1)/P1

k)
∼= P1

k ×ν[P(1,j)/Ga] [P(1, j)/Ga].

Similarly, the quotient stack Z := [Y/H] is an Artin–Schreier root stack over the preimage
of [0 : 1] in X, this time with jump pj:

Z = [Y/H] ∼= ℘−1
pj ((OX(1), s, f)/X) ∼= X ×ν[P(1,pj)/Ga] [P(1, pj)/Ga]

where s = ϕ∗x0 and f ∈ H0(X ,OX (pj)|P ) corresponds to t−jx as a germ of a rational
function at P = α−1(∞), where α : X → P1 is the coarse moduli map.

We’d like to describe Y := [Y/G] in a similar fashion. Below is a diagram showing the
relations between P1, X, Y and the quotients X ,Y and Z:

Y

[Y/H]

[Y/G]

X

[X/(G/H)] P1

δ

β

γ = α ◦ β

α
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Here, each solid vertical arrow is a degree p quotient, the solid diagonal arrows are the degree
p ramified covers described above (equations (I) and (II)), and the dashed horizontal arrows
are Artin–Schreier root stacks – from Lemma 2.6 it follows that β is an Artin–Schreier root
over the preimage of ∞ in X with jump pj, while the others are as described above. The
composition γ = α◦β can similarly be described as an Artin–Schreier–Witt root over∞ with
jumps j and pj: the tuple (L, x0, x

j
1, f) on P1 determines a morphism P1 → [W2(1, j, pj)/W2]

and pulling back along Ψ = Ψj,pj : [W2(1, j, pj)/W2]→ [W2(1, j, pj)/W2] yields Y :

P1

X

Y

[P(1, j)/Ga]

[P(1, j)/Ga]

[W2(1, j, pj)/W2]

[W2(1, j, pj)/W2]

r

r

℘j

Ψj,pj

Example 5.3. More generally, for any curve X and Witt vector-valued function w ∈
Wn(k(X)) r ℘(Wn(k(X))), let Yw be the curve over X assigned to F by Theorem 3.7;
call the corresponding ramified Z/pnZ-cover π : Yw → X. This determines a system of
equations

ypi − yi = Fi, 0 ≤ i ≤ n− 1

where F0 ∈ k(X) and each Fi is a polynomial in F0, . . . , Fi−1, y0, . . . , yi−1 over k(X). Then,
étale-locally about each ramification point on X, there is an isomorphism

ϕ : Ψ−1((L, s, f1, . . . , fn)/X)
∼−→ [Yw/(Z/pnZ)]

where (L, s, f1, . . . , fn) is defined as follows. First, the pair (L, s) corresponds to the divisor
div(F0) on X. Next, for each 1 ≤ i ≤ n− 1, define Xi to be the stack obtained by replacing
an étale neighborhood UP of each point P in the support of div(F0) with the quotient
[[UP/GP,i]/(GP,0/GP,i)], whereGP,0 = Gal(UP/π(UP )) andGi,P ⊆ GP,0 is the ith ramification
group in the upper numbering. For each i, choose fi ∈ H0(Xi−1,OXi−1

(ui)|Pi−1
) corresponding

to Fi, viewed as a germ of a rational function about Pi−1, the preimage of P in Xi (explicitly,
one can restrict Fi|π(UP ) and pull back to Xi to get fi). By Theorem 3.9, each fi has
valuation ui at P , where u1, . . . , un are the n upper jumps in the ramification filtration
GP,0 ⊇ GP,1 ⊇ · · · . The isomorphism ϕ follows as in Example 5.2; see also Remark 4.15.

In general, every Artin–Schreier–Witt root stack Ψ−1((L, s, f1, . . . , fn)/X) can be covered
in the étale topology by “elementary” ASW root stacks of the form [Y/(Z/pnZ)] as above.
Rigorously:

Proposition 5.4. Let X = Ψ−1((L, s, f1, . . . , fn)/X) be an Artin–Schreier–Witt root stack
of a scheme X along a tuple (L, s, f1, . . . , fn) ∈ Div[1,m1,...,mn](X) and let π : X → X be the
coarse map. Then for any point x̄ : Spec k → X , there is an étale neighborhood U of x = π(x̄)
such that U×X X ∼= [Y/(Z/pnZ)] where Y is a smooth, projective Artin–Schreier–Witt cover
of U .
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Proof. Apply Lemma 5.1 and Example 5.3. See also [Kob, Prop. 6.14].

We are now ready to extend the classification results in [Kob, Sec. 6] to wild stacky
curves with Z/pnZ automorphism groups. We say a sequence of positive integers m1, . . . ,mn

is admissible if it satisfies the conditions in [OP, Lem. 3.5], i.e. if it is possible for m1, . . . ,mn

to occur as the ramification jumps in the upper ramification filtration for a Z/pnZ-extension
of local fields.

Theorem 5.5. Let X be a Deligne–Mumford stack over a perfect field k of characteristic p >
0 and let m1, . . . ,mn ≥ 1 be an admissible sequence. Then for any tuple (L, s, f1, . . . , fn) ∈
Div[1,m1,...,mn](X ), the Artin–Schreier–Witt root stack Y = Ψ−1((L, s, f1, . . . , fn)/X ) is also
Deligne–Mumford.

Proof. Following the proof of [Kob, Thm. 6.15], it suffices to show this étale-locally, say
over an étale neighborhood U → X . We may assume L is trivial over U and lift U →
[Wn(1,m1, . . . ,mn)/Wn] to a map U → Wn(1,m1, . . . ,mn). Then Lemma 5.1 and Exam-
ple 5.3 imply Y ×X U ∼= [Y/G] where Y is a smooth scheme with an action of G = Z/pnZ
making Y into a G-torsor over U . Since G is étale, this quotient stack is Deligne–Mumford
[Ols, Cor. 8.4.2], so Y ×X U is also Deligne–Mumford.

Theorem 5.6. Let k be an algebraically closed field of characteristic p > 0 and suppose
π : Y → X is a finite separable Galois cover of curves over k with a ramification point
y ∈ Y over x ∈ X such that the inertia group I(y | x) is Z/pnZ. Then there exist étale
neighborhoods V → Y of y and U → X of x, a sequence of integers m1, . . . ,mn ≥ 1 satisfying
the hypotheses of [OP], and a tuple (L, s, f1, . . . , fn) ∈ Div[1,m1,...,mn](U) such that V → U
factors through an Artin–Schreier–Witt root stack

V → Ψ−1((L, s, f1, . . . , fn)/U)→ U.

Proof. Both proofs of the n = 1 case from [Kob] generalize, but here’s a streamlined version.
Since I = I(y | x) = Z/pnZ is abelian, [Ser1, Prop. VI.11.9] prescribes a rational map
ϕ : X 99K Jm to a generalized Jacobian of X with modulus m whose support includes x,
such that Y ∼= X ×Jm J ′ for some cyclic, degree pn isogeny J ′ → Jm. Choose an étale
neighborhood U ′ of X on which ϕ is defined and set U = U ′ ∪ {x}. Then π, which is the
pullback of J ′ → Jm, restricts to a one-point cover π|V : V → U of degree pn, ramified
exactly at x, with Galois group I. We would like to extend this to a compactified Witt stack
W := Wn(1,m1, . . . ,mn) for an admissible sequence m1, . . . ,mn:

V J ′ Wn W

U Jm Wn W

π|V
ϕ

℘ Ψ

We may assume π|V is cut out by an Artin–Schreier–Witt equation ℘y = w with w ∈
Wn(k(U)). For 1 ≤ i ≤ n, mi := vx(wi) is the ith the upper jump in the ramification
filtration of I. Let (L, s) correspond to the divisor x on U and choose sections fi as in
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Example 5.3. The data (L, s, f1, . . . , fn) defines the composition U → W in the bottom
row of the diagram. Pulling this data back to V defines the composition in the upper
row. Finally, by the definition of Ψ−1((L, s, f1, . . . , fn)/U) as a pullback, we get a morphism
V → Ψ−1((L, s, f1, . . . , fn)/U) through which π|V factors.

Theorem 5.7. Let X be a stacky curve over a perfect field k of characteristic p > 0 with
coarse space X and let x ∈ |X | be a stacky point with automorphism group Z/pnZ. Then X
has an open substack containing x of the form Ψ−1((L, s, f1, . . . , fn)/U) where U is an open
subscheme of X and (L, s, f1, . . . , fn) ∈ Div[1,m1,...,mn](U).

Proof. The ramification jumps of X at x may be defined by pulling back to any étale pre-
sentation Y → X and reading off the upper jumps in the cover of curves Y → X. We
may take U ⊆ X whose intersection with the image of the stacky locus of X is {x}. Set
U = U ×X X and V = U ×X Y . Then V → U is a one-point cover ramified at x, with
inertia Z/pnZ, so by Theorem 5.6 the cover factors as V → Ψ−1((L, s, f1, . . . , fn)/U) → U ,
where L = OU(x) with distinguished section s, and f1, . . . , fn come from an Artin–Schreier–
Witt equation for the cover, as in Example 5.3. By this description, we also get a map
U → Ψ−1((L, s, f1, . . . , fn)/U) which is independent of the cover chosen, so it gives us the
desired substack.

6 A Universal Stack

The various Artin–Schreier(–Witt) root stacks of a given scheme X can be packaged together
into a single stack as follows. We first deal with the Artin–Schreier case.

Note that when m | m′, there is a morphism of weighted projective stacks P(1,m′) →
P(1,m) which is Ga-equivariant, hence descending to [P(1,m′)/Ga]→ [P(1,m)/Ga]. Denote
the inverse limit of this system by AS, which is an ind-algebraic stack. For a scheme X, the
fibre product ASX := AS ×X parametrizes Artin–Schreier covers Y → X.

Theorem 6.1. Let Y → X be a finite separable Galois cover of curves over an algebraically
closed field of characteristic p > 0. Then about any ramification point with inertia group
Z/pZ, the cover factors through ASU for some étale neighborhood U of the corresponding
branch point on X.

Proof. Apply [Kob, Thm. 6.16].

Example 6.2. When X = Spec k((t)) for a perfect field k of characteristic p > 0, the stack
ASX coincides with the stack ∆Z/pZ of formal Z/pZ-torsors studied in [TY]. The quotients
[P(1,m)/Ga] can be viewed as a filtration of ∆Z/pZ by ramification jump, coinciding with
(A(S))∞ in the isomorphism (A(S))∞ ×B(Z/pZ) ∼= ∆Z/pZ from [loc. cit., Thm. 4.13].

More generally, for a fixed n ≥ 2, the compactified Witt stacks Wn(1,m1, . . . ,mn) form
an inverse system via mi | m′i for all i. Denote their inverse limit by ASWn, which is
again an ind-algebraic stack. Let ASWn,X := ASWn ×X be the stack which parametrizes
ASW-covers of X.
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Theorem 6.3. Let Y → X be a finite separable Galois cover of curves over an algebraically
closed field of characteristic p > 0. Then about any ramification point with inertia group
Z/pnZ, the cover factors through ASWn,U for some étale neighborhood U of the corresponding
branch point on X.

Proof. Apply Theorem 5.6.

Example 6.4. As in Example 6.2, ASWn,Spec k((t))
∼= ∆Z/pnZ, the stack of formal Z/pnZ-

torsors also studied in [TY]. In this case, the authors in loc. cit. do not give an explicit
parametrization as in the Z/pZ case, but they do present ∆Z/pnZ by a system of affine
schemes.

7 Application: Canonical Rings

Recall from Theorem 1.3 that for a stacky curve X over a field k with coarse moduli space
π : X → X, the following formula defines a canonical divisor KX on X :

KX = π∗KX +
∑

x∈X (k)

∞∑
i=0

(|Gx,i| − 1)x

where Gx,i are the higher ramification groups in the lower numbering at x.

Example 7.1. Let Y → P1 be the Artin–Schreier–Witt cover given by the equations

yp − y =
1

xm
and zp − z =

y

xm
.

This cover is ramified at the point Q lying over ∞ with group G = Z/p2Z and ramification
jumps m and m(p2 + 1) (by Example 5.2), so by the stacky Riemann–Hurwitz formula, the
quotient stack X = [Y/G] has canonical divisor

KX = −2Q+
m∑
i=0

(p2 − 1)Q+

m(p2+1)∑
i=m+1

(p− 1)Q

= −2Q+ ((m+ 1)(p2 − 1) +mp2(p− 1))Q

= (mp3 + p2 −m− 3)Q.

Using the formula deg(KX ) = 2g(X )− 2, we can also compute the genus of X :

g(X ) =
mp3 + p2 −m− 1

2p2
.

Using an appropriate form of Riemann–Roch (see [Beh, Cor. 1.189] or [VZB, Rmk. 5.5.12]
or [Kob, Sec. 7] for further discussion), one can recover the dimensions of the graded pieces
of the canonical ring of X :

h0(X , nKX ) = deg (bnKX c)− g(X) + 1 + h0(X , (1− n)KX ).

See [Kob, Ex. 7.8] for an example when X is an Artin–Schreier root stack over P1.
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Example 7.2. Let X = [Y/(Z/p2Z)] be the Artin–Schreier–Witt quotient from Example 7.1.
For the cases when m < p2, we have

bKX c = −2H +

⌊
mp3 + p2 −m− 1

p2

⌋
∞ = −2H +mp∞

so by Riemann–Roch, h0(X , KX ) = mp. There’s not such a clean formula for the global
sections of nKX , but one still has

h0(X , nKX ) = −2n+

⌊
n(mp3 + p2 −m− 1)

p2

⌋
+ 1 = n(mp− 1) +

⌊
−n(m+ 1)

p2

⌋
.

When m ≥ p2, the formulas are even more complicated, reflecting the importance of the
ramification jumps in the geometry of these wild stacky curves.

Example 7.3. LetM1,1 be the moduli stack of elliptic curves over a field F and letM1,1 be
its standard compactification obtained by adding nodal curves. When charF 6= 2, 3,M1,1 is
isomorphic to a stacky P1, namely the weighted projective stack P(4, 6). While this is not a
stacky curve, one can rigidifyM1,1 to remove the generic µ2 action and obtain a stacky curve

Mrig

1,1
∼= P(2, 3) (see [VZB, Rmk. 5.6.8]). This only changes the canonical ring by shifting the

grading: a section in the weight k piece of R(Mrig

1,1) corresponds to a section in the weight 2k

piece of R(M1,1). The same is true if we instead consider the log canonical ring R(M1,1,∆),
where ∆ is the log divisor of cusps (in this case, ∆ is the single point added to compactify
M1,1). By [VZB, Lem. 6.2.3],

R(M1,1,∆) ∼=
∞⊕
k=0

Mk

whereMk is the space of weight k (Katz) modular forms. On the other hand, the isomorphism

Mrig

1,1
∼= P(2, 3) and Theorem 1.3 imply that K = −2∞ + 2P + Q is a canonical divisor on

Mrig

1,1, where P is the elliptic curve with j = 0 and Q is the one with j = 1728. Then
Riemann–Roch says that

R(Mrig

1,1,∆) ∼= F [x2, x3]

where xi is a generator in weight i. Applying the grading shift, we get

R(M1,1,∆) ∼= F [x4, x6]

which recovers a classical result for modular forms in all characteristics other than 2 and 3.

Example 7.4. In characteristic 3, the points on M1,1 corresponding to elliptic curves with
j-invariants 0 and 1728 collide, resulting in a more exotic stacky structure. Indeed, one can

show that Mrig

1,1 is isomorphic to a stacky curve with coarse space P1 and a single stacky
point with automorphism group S3, which is nonabelian. Such a stacky curve is of course
not a tame or wild root stack, but one can take the fibre product of a tame square root stack
and an Artin–Schreier root stack of order 3, both over ∞ ∈ P1, to obtain this curve.
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Example 7.5. In characteristic 2, things are even worse. Once again, the points with j = 0

and 1728 collide and this time Mrig

1,1 is isomorphic to a stacky P1 with a single stacky point
whose automorphism group is the semidirect product (Z/2Z×Z/2Z)oZ/3Z. As the 2-part
of this group is not cyclic, one must iterate Artin–Schreier root stacks to achieve the wild
part of the structure; see Section 8 for more details.

To use the stacky Riemann–Hurwitz formula (Theorem 1.3) in both of these cases, one
needs to compute the ramification filtration for the automorphism group at j = 0 = 1728
and read off the ramification jumps. In forthcoming joint work with David Zureick-Brown,
we compute these ramification jumps and recover the result, originally due to Deligne [Del],
that in characteristics p = 2, 3, the ring of mod p modular forms (of level 1) is isomorphic to
the graded ring Fp[x1, x6], where xi is a generator in degree i. We will also give an account
of the following example.

Example 7.6. Another example coming from modular curves is, for a prime p > 5, the
quotient X = [X(p)/PSL2(Fp)]. As pointed out in [VZB, Rmk. 5.3.11], in characteristic 3,
X is a stacky P1 with two stacky points P and Q whose automorphism groups are Z/pZ and
S3, respectively (assuming p > 3). Therefore a canonical divisor on X is

KX = −2H + (p− 1)P + (5 + 2m)Q

where H 6∈ {P,Q} and m is the jump in the ramification filtration of S3 at Q. Calculations
show that m = 1 and the canonical ring of X is generated by monomials of the form satb,
where a and b satisfy (p+1)b

p
≤ a ≤ 7b

6
; see [O’D]. In particular, the canonical ring has

⌊
p
6

⌋
generators in degree p. For example, when p = 7 or 11, the canonical ring has 1 generator
in degree p and none in lower degrees.

8 Future Directions

It would be desirable to have a geometric description (i.e. in terms of intrinsic data such as
line bundles and sections) of the local structure of stacky curves with arbitrary automorphism
groups. As pointed out in Section 1.1, these are all of the form P o Z/rZ for some p-group
P and some r prime to p. Of course, Lemma 5.1 and its tame analogue [Cad, Rmk. 2.2.3]
allow one to iterate tame and wild cyclic root stacks to obtain any local desired structure.
In theory this can be used to describe such a structure in terms of line bundles and sections,
but it is unwieldy.

Example 8.1. If X is a stacky curve in characteristic p with a stacky point x whose auto-
morphism group is G ∼= Z/pZ × Z/pZ, one can obtain this local structure by iterating two
Artin–Schreier root stacks. For example, a stacky P1 with a single stacky point at ∞ with
this structure can be constructed by

X = ℘−1
m1

((O(1), x0, x
m1
1 )/P1)×P1 ℘−1

m2
((O(1), x0, x

m2
1 )/P1)

where m1,m2 are the lower jumps in the desired ramification filtration of G.
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Any stacky curve with automorphism groups that are elementary abelian may be con-
structed in a similar fashion, using Artin–Schreier and Artin–Schreier–Witt root stacks. This
is of evident interest in characteristic 2 in light of Example 7.5. One can also construct stacky
structures with cyclic-by-tame automorphism groups, although it is not clear how to classify
these structures since the semidirect product structure does not appear in the root stack
constructions.

Question 8.2. Can one extend Theorem 5.7 to cyclic-by-tame automorphism groups?

Question 8.3. Can one give an intrinsic description (in terms of line bundles, sections,
etc.) of a stacky P1 in characteristic 2 with an automorphism group Q8?

From our perspective, the main obstacle to an intrinsic description of general stacky
structures is the lack of a nonabelian generalization of Garuti’s compactification Wn. A
possible approach may be found in the Inaba classification of G-extensions, where G is a
p-group in characteristic p, due to Bell [Bel] in its most general form.

Theorem 8.4 ([Bel, Thm. 1.5]). Let G be a finite p-group, possibly nonabelian, and fix an
embedding G ↪→ Un(Fp) into the unitary group Un(Fp). For a ring R of characteristic p with
connected spectrum X = SpecR, the Galois G-covers of X are classified up to isomorphism
by the quotient Un(R)/LUn(R), where L(M) = M (p)M−1 for any matrix M ∈ Un(R), and
where M (p) is the matrix whose entries are the pth powers of the entries of M .

Question 8.5. Is there a natural compactification of the unitary group Un, which contains
Garuti’s Wn as a subvariety, such that the map L : Un → Un extends to the compactification?
Is there a stacky compactification of Un generalizing the stacks Wn(1,m1, . . . ,mn)?
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