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Introduction

Goal:

Introduce wild ramification in stacky curves

Natural relation to moduli problems in characteristic p > 0

Moduli problems are ‘the right framework’ to study modular forms

– at least, for an algebraic geometer like me :)
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Motivation

Modular forms have a natural interpretation as sections of certain line
bundles over a moduli space – hence the name ‘modular’ form.

Here’s an example to keep in mind:

Example

Γ = PSL2(Z) acts on h = {z ∈ C : im(z) > 0} by fractional linear
transformations.

Y = h/Γ is an affine curve, projective closure X ∼= P1
C is a Riemann

surface.

modular forms of weight 2k ←→ sections of the line bundle ω⊗kX

where f(z) ∈M2k ↔ f(z) dzk.



Introduction Moduli Problems Stacky Curves Root Stacks

Motivation

Modular forms have a natural interpretation as sections of certain line
bundles over a moduli space – hence the name ‘modular’ form.

Here’s an example to keep in mind:

Example

Γ = PSL2(Z) acts on h = {z ∈ C : im(z) > 0} by fractional linear
transformations.

Y = h/Γ is an affine curve, projective closure X ∼= P1
C is a Riemann

surface.

modular forms of weight 2k ←→ sections of the line bundle ω⊗kX

where f(z) ∈M2k ↔ f(z) dzk.



Introduction Moduli Problems Stacky Curves Root Stacks

Motivation

Example

Γ = PSL2(Z) acts on h = {z ∈ C : im(z) > 0} by fractional linear
transformations.

Y = h/Γ is an affine curve, projective closure X ∼= P1
C is a Riemann

surface.

modular forms of weight 2k ←→ sections of the line bundle ω⊗kX

where f(z) ∈M2k ↔ f(z) dzk.

P1
C = moduli space parametrizing isomorphism classes of elliptic

curves (via j-invariant)
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Moduli Problems

What do we mean by a “moduli problem”?

Loosely, a moduli problem is of the form “classify all objects of a
certain type”.

Examples:
circles←→ radius + center
circles up to isometry←→ radius
lines through the origin←→ unit vector / ±
elliptic curves up to isomorphism←→ j-invariant
lines on a cubic surface←→ there are exactly 27
more examples?
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Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes→ Sets.

Definition

P is representable if P (X) = Hom(X,M) for some scheme M –
called a moduli space for P .

Examples:
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Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes→ Sets.

Definition

P is representable if P (X) = Hom(X,M) for some scheme M –
called a moduli space for P .

Examples:
circles←→ R>0 × R2

circles up to isometry←→ R>0

lines through the origin←→ P1
R

elliptic curves up to isomorphism←→ A1
j

lines on a cubic surface←→ zero-dim. variety with 27 points
more examples?
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Moduli Problems via Stacks

Definition
A stack over a scheme X is:

a family of categories C → X (i.e. a fibered category)
morphisms in each category Cx are all isomorphisms (i.e. Cx is a
groupoid)

A nice class of stacks are Deligne-Mumford stacks. Think: “schemes
with a finite automorphism group attached at each point”.

Z/2Z Z/3Z D4
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Moduli Problems via Stacks

Definition
A stack over a scheme X is:

a family of categories C → X (i.e. a fibered category)
morphisms in each category Cx are all isomorphisms (i.e. Cx is a
groupoid)

Example

Y a scheme, G a group acting on Y : the quotient stack

Y

[Y/G]

parametrizes points of the quotient Y/G along with their
automorphisms.
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Moduli Problems via Stacks

Example (Important)

For every group G, there is a quotient stack

•

[•/G] =: BG

that knows about all principal G-bundles:

BunG(X) ∼= Hom(X,BG)

Example

Principal GLn(k)-bundles↔ rank n vector bundles
In particular, principal Gm-bundles↔ line bundles
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Stacky Curves

Definition
A stacky curve is a smooth, separated, connected, one-dimensional
Deligne-Mumford stack X over a field k.

Think: smooth curve with some finite groups attached to a finite
number of points

Z/2Z Z/3Z D4

Call X tame if the orders of its stabilizers are prime to char k.
Otherwise, X is wild.
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Stacky Curves

Definition
The canonical ring of X is the graded ring

R(X ) =

∞⊕
k=0

H0(X , ω⊗kX )

where ωX is the canonical sheaf on X (similar to that of a scheme).

When X = h/Γ0(N) is a stacky modular curve,
H0(X , ω⊗kX ) ∼= S2k(N), the space of weight 2k cusp forms of level N .
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Stacky Curves

R(X ) =

∞⊕
k=0

H0(X , ω⊗kX )

Theorem (Voight & Zureick-Brown)

There exists a combinatorial description of R(X ) when X is tame.

Their proof uses: every tame stacky curve over an algebraically
closed field is a root stack.

Explicit descriptions of spaces of modular forms in many cases
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Stacky Curves

To extend this to wild stacky curves, we can use Artin-Schreier root
stacks (work in progress).

This matters: dimension formulas for the spaces of modular forms for
the congruence subgroups Γ0(p) and Γ1(p) . . .
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Root Stacks

Natural question: for a line bundle L→ X on a scheme or variety,
does there exist another line bundle E → X such that E⊗r = L?

Example

Recall: modular forms of weight 2k ↔ sections of a line bundle.
Interesting question when f(z) = g(z)m for some g(z) of lower weight.

A root stack is a stacky version of X on which things like L1/r live.
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Root Stacks

Rigorously:

Definition (Cadman, ‘07)

For a stack X, a line bundle L→ X with section s and r ≥ 1, the rth
root stack r

√
(L, s)/X is the fibre product

r
√

(L, s)/X [A1/Gm]

X [A1/Gm]

x

xr
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Artin-Schreier Root Stacks

What to do when char k = p > 0?
The Frobenius causes problems for E⊗p = L.

Definition (K.)

For a stack X, a line bundle L→ X and sections s : X → L and
f : X → L⊗m, the Artin-Schreier root stack with jump m is the fibre
product

℘−1m ((L, s, f)/X) [P(m, 1)/Ga]

X [P(m, 1)/Ga]

[x, y]

[xp − xym(p−1), yp]
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Artin-Schreier Root Stacks

Example

Quotient of an AS curve by Z/pZ-action modeled by AS root stack:

[Y/(Z/pZ)] ∼= ℘−1m ((OA1 , x, f)/A1)

where Y = Spec k[x, y]/(yp − y − f(x)).

Work in progress:
Describe canonical ring for wild stacky curves
Generalize to Z/paZ-covers
Compute spaces of modular forms in char. p
And more!
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