Group members:

Warm-up: write the formulas for L_{n}, R_{n}, M_{n} and T_{n}. What are some of the similarities and differences between these approximation formulas?

Problem 1. Let $f(x)=\sin x$ on the interval $[0, \pi]$. Let's divide the interval into $n=4$ pieces and estimate the definite integral $\int_{0}^{\pi} \sin x d x$ using the Trapezoid Rule.

$T_{4}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+f\left(x_{4}\right)\right)=$

Compare this to the actual value of the definite integral:

Problem 2. On the graph below, draw the midpoint approximation M_{6} for $f(x)=\frac{2}{x}$ on the interval $[1,4]$ with $n=6$ subintervals.

Now compute M_{6}.

Problem 3. On the graph below, draw the trapezoid approximation T_{6} for $f(x)=\frac{2}{x}$ on the interval $[1,4]$ with $n=6$ subintervals.

Now compute T_{6}.

Problem 4. For your computations of M_{6} and T_{6} in Problems 2 and 3, compute the theoretical error bounds and comment on how each approximation was compared to the "expected error". Is this what you would have predicted?

Problem 5. How large should n be so that the trapezoid approximation T_{n} of $\int_{0}^{1} x e^{-x} d x$ is accurate to within 0.001 ?

Problem 6. Find an interval $[a, b]$ on which M_{n} underestimates and R_{n} overestimates the value of $\int_{a}^{b} x^{2} \ln (x) d x$.

Problem 7. Here are some more integrals to practice.
(a) $\int x \arctan (x) d x$
(b) $\int\left(2 x^{2}+1\right) e^{x^{2}} d x$
(c) $\int \frac{\ln (x)+1}{x^{2}} d x$
(d) $\int \frac{e^{1 / x}}{x^{3}} d x$

