Group members:

Warm-up: here's an example of a region with "infinite length" but finite area:



Write down an improper integral that describes the area under the graph above:

area =

How would you evaluate this expression?

**Problem 1.** Determine whether the following integrals converge or diverge. Also, find the values of any that converge.

(a) 
$$\int_{-\infty}^{\pi} \cos(x) \, dx$$

(b) 
$$\int_2^\infty \frac{1}{x \ln(x)} dx$$

(c) 
$$\int_0^\infty x \mathrm{e}^{-x} \, dx$$

(d) 
$$\int_0^2 \frac{1}{\sqrt[3]{x-1}} dx$$

(e) 
$$\int_{-\infty}^{\infty} \frac{1}{4+x^2} \, dx$$

**Problem 2.** For what values of p does  $\int_{1}^{\infty} \frac{1}{x^{p}} dx$  converge?

**Problem 3.** Find the volume of the solid obtained by rotating the area bounded by x = 1,  $y = \frac{1}{x}$ , and the x-axis around the x-axis.

**Problem 4.** There is exactly one constant A for which  $\int_0^\infty \left(\frac{2x}{1+x^2} + \frac{A}{x+1}\right) dx$  converges. Find it and evaluate the integral for that constant.