Group members:

Warm-up: what properties must a function f(x) satisfy in order to be a probability density function for a continuous random variable? Compare each of these to the discrete case.

Problem 1. Find a formula for the probability density function f(x) of a uniform random variable on the interval [1,4]. Then compute the median and expected value of f(x). Is this what you expect?

Problem 2. (Lecture 2.6, Q6) One of the following probability questions is different from the others. Explain why.

- (a) If you spin a prize wheel 3 times, what is the probability that my winnings add up to exactly \$80?
- (b) If you flip two weighted (unfair) coins, what is the probability that exactly one of them comes up tails?
- (c) If you pick a random person, what is the probability that her height is exactly 68 inches?
- (d) If I spin a wheel of names, what is the probability that it takes exactly 7 spins to land on my own name?

Problem 3. Suppose the prize wheel in part (a) of Problem 2 has 3 different options for the needle to land on: \$0, \$40 and \$80. Compute the probability of winning exactly \$80 in 3 spins. What are the expected winnings?

Problem 4. Suppose we model the wheel of names in part (d) of Problem 2 using an exponential distribution $f(x) = 0.07e^{-0.07x}$ on $[0, \infty)$. The *continuous* random variable X with this distribution measures the event that I spin my name on the wheel after x spins, and I expect to spin my name 7 times every 100 spins, so that $\lambda = 0.07$. What is the probability that it takes exactly 7 spins to land on my name for the first time? Hint: we can compute this as $P(6.5 \le X \le 7.5)$.

Problem 5. Let $f(x) = \frac{k}{\sqrt{x}}$.

(a) Find the value of k that makes f(x) a probability density function on the interval [0, 1].

(b) Compute the probability that $X \ge \frac{1}{2}$ where X is a continuous random variable on [0, 1] with distribution f(x).

Problem 6. Let X be a continuous random variable on [0, 4] with the following probability density function:

$$f(x) = \begin{cases} 1 - x, & 0 \le x < 1\\ \frac{1}{36}(x^2 - 1), & 1 \le x \le 4. \end{cases}$$

Find the following probabilities.

(a) $P(0 \le X \le 4)$, i.e. verify that f(x) is actually a probability density function on [0, 4]

(b) $P(X \le 1)$

(c) $P(X \le 2)$

(d) $P(X \le 2 \text{ OR } X \ge 3)$

Problem 7. Let X be a continuous random variable on [0, 1] with probability density function $f(x) = kx^4(1-x)$.

(a) Find k.

(b) Find the expected value of X.

(c) Find the median of X.

Problem 8. Let X be a continuous random variable on [1, 4] with probability density function f(x). Suppose $\int_{1}^{4} x^{2} f'(x) dx = 11$, f(1) = 2 and f(4) = 1. Find the expected value E[X]. Hint: integrate by parts.