Group members:

Warm-up: write the formula for the variance $\operatorname{Var}[X]$ of a continuous random variable X below. Explain what each piece of the formula means in relation to X.

Problem 1. Compute the variance of a continuous exponential random variable X with $\lambda=10$ on $[0, \infty)$. What proportion of the outcomes, i.e. the x-values in $[0, \infty)$, fall within 1 standard deviation of the mean?

Taylor Polynomials

Motivation: polynomials are much easier to work with than any other type of function they are easy to evaluate, take limits of, differentiate, integrate and graph. The fundamental philosophy of Taylor polynomials is that every continuous function can be approximated by polynomials to an arbitrary degree of precision. (And ultimately, taking the limit of this polynomial approximation technique will produce a power series, which we'll learn about soon.)

Take a continuous function $f(x)$ and a point a in the domain of $f(x)$ for which we already know $f(a)$. The idea is we might want to estimate values nearby, such as $f\left(a-\frac{1}{2}\right)$, $f(a+0.01), f(a-0.0004)$, without knowing their actual values. A good first estimate is the tangent line:

$$
y=T_{1}(x)=f(a)+f^{\prime}(a)(x-a) .
$$

Show that $T_{1}(x)$ has: (i) the same y-value as $f(x)$ at $x=a$, and (ii) the same slope as $f(x)$ at $x=a$.

This means $T_{1}(x)$ can be used to give an okay approximation of values $f(x)$ close to $f(a)$.
What if we want a polynomial that also matches the concavity of $f(x)$ at $x=a$? Try:

$$
T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}
$$

Show that $T_{2}(x)$ has: (i) the same y-value, (ii) the same slope and (iii) the same concavity as $f(x)$ at $x=a$.

Definition. For $n \geq 0$, the degree n Taylor polynomial approximating $f(x)$ at $x=a$ is the polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{6}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

FACT: $T_{n}(x)$ matches the values of $f(x)$ and the first n derivatives $f^{\prime}(x), f^{\prime \prime}(x), \ldots, f^{(n)}(x)$ at $x=a$.

Problem 2. Find the degree 4 Taylor polynomial $T_{4}(x)$ approximating $f(x)=e^{x}$ at $a=0$. Can you guess what the formula for $T_{n}(x)$ is?

Problem 3. Compute the first 3 digits after the decimal in the number $e=2 . ? ? ? \ldots$. Then describe how you would find the first 10 digits.

Problem 4. Estimate $\sin (1)$ using the degree 5 Taylor polynomial of $f(x)=\sin (x)$ at $a=0$. How accurate is your estimate?

