Group members:

Warm-up: write the formula for the Taylor series for $f(x)$ centered at $x=a$. What is the Maclaurin series for $f(x)$?

Problem 1. Use the definition of a Taylor series to find a power series representing the function $f(x)=e^{2 x}$ centered at $x=1$.

Problem 2. Use a known Taylor series to find a power series for $x \cos \left(3 x^{2}\right)$ centered at $x=0$.

Problem 3. Use power series to evaluate the limit $\lim _{x \rightarrow 0} \frac{\ln (1+x)-x}{x^{2}}$.

Problem 4. Use power series to compute the limits of the following infinite series. That is, show that they converge and find the value they converge to.
(a) $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n} n!}$
(b) $\sum_{n=0}^{\infty}(-1)^{n} \frac{n}{2^{n}}$ Hint: Try differentiating a known power series.

Problem 5. If $f(x)=e^{x^{2}}$, find $f^{(50)}(0)$. Hint: try writing the Maclaurin series of $f(x)$.

Common Maclaurin series:

Series	Radius of convergence
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots$	1
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x \frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\ldots$	∞
$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{7!} x^{7}+\ldots$	∞
$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{6!} x^{6}+\ldots$	∞
$\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\ldots$	1
$\ln (1+x)=\sum_{n=1}^{n}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots$	1

