Group members:

Warm-up: describe in words what it means for the following to be true:

$$\lim_{(x,y)\to(a,b)}f(x,y)=L.$$

What are some ways for the limit to not exist?

Problem 1. Consider the function $f(x, y) = \frac{xy}{x+y}$.

(a) What is the domain of f(x, y)?

(b) Compute the limit $\lim_{(x,y)\to(5,1)} f(x,y)$ or show that it does not exist.

Problem 2. Consider the function $f(x,y) = \frac{2x^2 - xy - y^2}{x^2 - y^2}$.

(a) What is the domain of f(x, y)?

(b) Compute the limit of f(x, y) as (x, y) approaches (1, 1) along the line y = 1. Pay attention to what technique you use to evaluate this limit.

(c) Compute the limit of f(x, y) as (x, y) approaches (1, 1).

Problem 3. Use the Squeeze Theorem to evaluate each of the following limits.

(a)
$$\lim_{(x,y)\to(0,0)} x^2 \sin\left(\frac{1}{x^2+y^2}\right)$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{|xy|}{\sqrt{x^2+y^2}}$$

Problem 4. Find a real number A that makes the function

$$f(x,y) = \begin{cases} \frac{x^2 - 2xy}{x^2 - 4y^2}, & x \neq \pm 2y \\ A, & (x,y) = (2,1) \end{cases}$$

continuous at (x, y) = (2, 1).

Problem 5. For which points (x, y) is the function

$$f(x,y) = \begin{cases} \frac{\cos(y)\sin(x)}{x}, & x \neq 0\\ \cos(y), & x = 0 \end{cases}$$

continuous?