Group members:

Warm-up: describe in words what it means for the following to be true:

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

What are some ways for the limit to not exist?

Problem 1. Consider the function $f(x, y)=\frac{x y}{x+y}$.
(a) What is the domain of $f(x, y)$?
(b) Compute the limit $\lim _{(x, y) \rightarrow(5,1)} f(x, y)$ or show that it does not exist.

Problem 2. Consider the function $f(x, y)=\frac{2 x^{2}-x y-y^{2}}{x^{2}-y^{2}}$.
(a) What is the domain of $f(x, y)$?
(b) Compute the limit of $f(x, y)$ as (x, y) approaches $(1,1)$ along the line $y=1$. Pay attention to what technique you use to evaluate this limit.
(c) Compute the limit of $f(x, y)$ as (x, y) approaches $(1,1)$.

Problem 3. Use the Squeeze Theorem to evaluate each of the following limits.
(a) $\lim _{(x, y) \rightarrow(0,0)} x^{2} \sin \left(\frac{1}{x^{2}+y^{2}}\right)$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{|x y|}{\sqrt{x^{2}+y^{2}}}$

Problem 4. Find a real number A that makes the function

$$
f(x, y)= \begin{cases}\frac{x^{2}-2 x y}{x^{2}-4 y^{2}}, & x \neq \pm 2 y \\ A, & (x, y)=(2,1)\end{cases}
$$

continuous at $(x, y)=(2,1)$.

Problem 5. For which points (x, y) is the function

$$
f(x, y)= \begin{cases}\frac{\cos (y) \sin (x)}{x}, & x \neq 0 \\ \cos (y), & x=0\end{cases}
$$

continuous?

