Group members:

Warm-up: in words, what does it mean to take the partial derivative of $f(x, y)$ with respect to x ? with respect to y ? How do the values $f_{x}(a, b)$ and $f_{y}(a, b)$ related to the graph $z=f(x, y)$ near $(x, y)=(a, b)$?

Problem 1. Compute the partial derivatives of $f(x, y)=x^{2}+4 x y+y^{3}+4 y$ with respect to x and y.

Problem 2. (Lecture 4.4, Q20) Suppose Jinteki Corporation makes widgets which it sells for $\$ 100$ each. It commands a small enough portion of the market that its production level does not affect the demand (price) for its products. If W is the number of widgets produced and C is their operating cost, Jinteki's profit is modeled by

$$
P=100 W-C
$$

Since $\frac{\partial P}{\partial W}=100$ does this mean that increasing production can be expected to increase profit at a rate of $\$ 100$ per widget?

Problem 3. Compute the partial derivatives of the function $f(x, y)=\ln \left(e^{x y}+x^{2}+2 y^{4}+1\right)$.

Problem 4. Let $f(x, y)=x^{2}+2 y^{2}-2 x$.
(a) Compute the partial derivatives f_{x} and f_{y}.
(b) Find all points (x, y) in the domain of f for which f_{x} and f_{y} are both 0 and interpret your answer. What does the graph $z=f(x, y)$ look like at these points?
(c) Compute the second-order partial derivatives $f_{x x}, f_{y y}$ and $f_{y x}=f_{x y}$.

Problem 5. Compute all second-order partial derivatives of $f(x, y)=(x+2)(y-1) e^{x^{2}+y^{2}}$.

Problem 6. Let $f(x, y)$ be a function of two variables with continuous partial derivatives of all orders. For each of the following, determine whether the statement is TRUE or FALSE and justify your answer.
(a) $f_{x x y}=f_{x y x}$
(b) $f_{x y x y}=f_{y x y x}$
(c) $f_{x x y x x y}=f_{y y x y y x}$

Problem 7. Find $f_{x x}$ and $f_{y x}$ where $f(x, y)=11-y+y^{4} x^{2}+12 x^{2022}+y^{2023}$.

Problem 8. For the function $f(x, y)=10-4 x^{2}-y^{2}$,
(a) Find an equation for the line that is tangent to the graph $z=f(x, y)$ at $(1,2)$ and parallel to the x-axis.
(b) Find an equation for the line that is tangent to the graph $z=f(x, y)$ at $(1,2)$ and parallel to the y-axis.

Problem 9. Recall that for a function $f(x, y)$ to have $f_{y x}=f_{x y}$ ("equality of mixed partials"), it is necessary for these second-order partial derivatives to be continuous. Show that for the function

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

the mixed partials $f_{y x}$ and $f_{x y}$ have different values at $(0,0)$. Why isn't this a contradiction to Clairaut's Theorem? Hint: use the limit definitions of f_{x} and f_{y} to find piecewise formulas for these first-order partial derivatives before using the limit definitions of $f_{y x}$ and $f_{x y}$ to find the values $f_{y x}(0,0)$ and $f_{x y}(0,0)$.

