Group members:

Warm-up: write an equation for the tangent plane T to the graph $z=f(x, y)$ near the point $\left(x_{0}, y_{0}\right)$. What can you say about the points on T near $\left(x_{0}, y_{0}\right)$?

Problem 1. Find an equation for the tangent plane to $z=\ln (2 x+y)$ at the point $(-1,3)$.

Problem 2. Find the linear approximation to $z=3+\frac{x^{2}}{16}+\frac{y^{2}}{9}$ at the point $(-4,3)$.

Problem 3. Find the linear approximation to $z=4 x^{2}-y e^{2 x+y}$ at the point $(-2,4)$.

Problem 4. (Lecture 4.5, Q22) Suppose I decide to invest $\$ 10,000$ expecting a 6% annual rate of return for 12 years, after which I'll use it to purchase a house. The formula for compound interest

$$
P=P_{0} e^{r t}
$$

indicates that when I want to buy a house, I will have $P=10,000 e^{0.72}$ dollars. I accept that my expected rate of return might have an error of up to $d r=2 \%$. Also, I may decide to buy a house up to $d t=3$ years before or after I expected.
(a) Write the formula for the differential $d P$ at $\left(r_{0}, t_{0}\right)=(0.06,12)$.
(b) Given my assumptions, what is the maximum estimated error $d P$ in my initial calculation?
(c) What is the actual maximum error in P ?
(d) If I allow myself some flexibility in the initial investment P_{0}, how can I express the error $d P$ in terms of the errors of all three variables: P_{0}, r and t ?

Problem 5. For the function $g(x, y)=\sqrt{41-4 x^{2}-y^{2}}$, approximate $g(2.1,2.9)$ using the point $\left(x_{0}, y_{0}\right)=(2,3)$. How much error is involved in your approximation?

Problem 6. Does the function

$$
f(x, y)=\sqrt{x^{2}+y^{2}}
$$

have a tangent plane at $(0,0)$? Why or why not? Interpret this graphically.

