Group members:

Warm-up: state the Extreme Value Theorem for a multivariable function f(x, y) and explain how you would check each of the conditions in the theorem.

Problem 1. (Lecture 5.6, Q32) Let f(x, y) be a differentiable function and let

$$D = \{(x, y) : y \ge x^2 - 4, x \ge 0, y \le 5\}.$$

(a) Sketch the domain D.

(b) Does the Extreme Value Theorem guarantee that f has an absolute minimum on D? Explain.

(c) List all the places you would need to check in order to locate the minimum.

Problem 2. Classify the critical point (0,0) of $f(x,y) = \cos(2x+y) + xy$ as a local maximum, a local minimum or a saddle point.

Problem 3. Find and classify the critical points of $f(x, y) = (y - 2)x^2 - y^2$.

Problem 4. Find the absolute minimum and maximum values of the function $f(x, y) = 2x^2 - y^2 + 6y$ on the region $x^2 + y^2 \le 16$. *Hint: draw the region first.*

Problem 5. Find the absolute minimum and maximum values of the function $f(x, y) = 2x^3 - 4y^3 + 24xy$ on the region $0 \le x \le 5, -3 \le y \le -1$. *Hint: draw the region first.*

Problem 6. Find the absolute minimum and maximum values of the function $f(x, y) = 18x^2 + 4y^2 - y^2x - 2$ on the solid triangle with vertices (-1, -1), (5, -1) and (5, 17). *Hint: draw the region first.*

Problem 7. After decades of research, the Lucky Tails Saddle Company has perfected their saddle design, which can be modeled by the graph of the function $h(x, y) = \frac{4}{5}x^2 - \frac{9}{10}y^2$ over the domain $R = \{(x, y) : -2 \le x \le 3, -2 \le y \le 2\}.$

(a) Find the saddle point of this saddle.

(b) A horse trainer informs Lucky Tails that in order for a saddle to fit most comfortably on a horse, its highest point should be in the direction of the horse's head. Using (x, y)coordinates, explain how to orient the saddle when placing it on a horse's back in order to fit most comfortably.