Group members:

Warm-up: state the Extreme Value Theorem for a multivariable function $f(x, y)$ and explain how you would check each of the conditions in the theorem.

Problem 1. (Lecture 5.6, Q32) Let $f(x, y)$ be a differentiable function and let

$$
D=\left\{(x, y): y \geq x^{2}-4, x \geq 0, y \leq 5\right\} .
$$

(a) Sketch the domain D.
(b) Does the Extreme Value Theorem guarantee that f has an absolute minimum on D ? Explain.
(c) List all the places you would need to check in order to locate the minimum.

Problem 2. Classify the critical point $(0,0)$ of $f(x, y)=\cos (2 x+y)+x y$ as a local maximum, a local minimum or a saddle point.

Problem 3. Find and classify the critical points of $f(x, y)=(y-2) x^{2}-y^{2}$.

Problem 4. Find the absolute minimum and maximum values of the function $f(x, y)=$ $2 x^{2}-y^{2}+6 y$ on the region $x^{2}+y^{2} \leq 16$. Hint: draw the region first.

Problem 5. Find the absolute minimum and maximum values of the function $f(x, y)=$ $2 x^{3}-4 y^{3}+24 x y$ on the region $0 \leq x \leq 5,-3 \leq y \leq-1$. Hint: draw the region first.

Problem 6. Find the absolute minimum and maximum values of the function $f(x, y)=$ $18 x^{2}+4 y^{2}-y^{2} x-2$ on the solid triangle with vertices $(-1,-1),(5,-1)$ and $(5,17)$. Hint: draw the region first.

Problem 7. After decades of research, the Lucky Tails Saddle Company has perfected their saddle design, which can be modeled by the graph of the function $h(x, y)=\frac{4}{5} x^{2}-\frac{9}{10} y^{2}$ over the domain $R=\{(x, y):-2 \leq x \leq 3,-2 \leq y \leq 2\}$.
(a) Find the saddle point of this saddle.
(b) A horse trainer informs Lucky Tails that in order for a saddle to fit most comfortably on a horse, its highest point should be in the direction of the horse's head. Using (x, y) coordinates, explain how to orient the saddle when placing it on a horse's back in order to fit most comfortably.

