
Math 210 Classwork 5.6 Spring 2022

Group members:

Warm-up: state the Extreme Value Theorem for a multivariable function f(x, y) and explain
how you would check each of the conditions in the theorem.

Problem 1. (Lecture 5.6, Q32) Let f(x, y) be a differentiable function and let

D = {(x, y) : y ≥ x2 − 4, x ≥ 0, y ≤ 5}.

(a) Sketch the domain D.

(b) Does the Extreme Value Theorem guarantee that f has an absolute minimum on D?
Explain.

(c) List all the places you would need to check in order to locate the minimum.
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Problem 2. Classify the critical point (0, 0) of f(x, y) = cos(2x + y) + xy as a local maxi-
mum, a local minimum or a saddle point.

Problem 3. Find and classify the critical points of f(x, y) = (y − 2)x2 − y2.
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Problem 4. Find the absolute minimum and maximum values of the function f(x, y) =
2x2 − y2 + 6y on the region x2 + y2 ≤ 16. Hint: draw the region first.
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Problem 5. Find the absolute minimum and maximum values of the function f(x, y) =
2x3 − 4y3 + 24xy on the region 0 ≤ x ≤ 5,−3 ≤ y ≤ −1. Hint: draw the region first.
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Problem 6. Find the absolute minimum and maximum values of the function f(x, y) =
18x2 + 4y2 − y2x− 2 on the solid triangle with vertices (−1,−1), (5,−1) and (5, 17). Hint:
draw the region first.
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Problem 7. After decades of research, the Lucky Tails Saddle Company has perfected their
saddle design, which can be modeled by the graph of the function h(x, y) = 4

5
x2 − 9

10
y2 over

the domain R = {(x, y) : −2 ≤ x ≤ 3,−2 ≤ y ≤ 2}.

(a) Find the saddle point of this saddle.

(b) A horse trainer informs Lucky Tails that in order for a saddle to fit most comfortably
on a horse, its highest point should be in the direction of the horse’s head. Using (x, y)
coordinates, explain how to orient the saddle when placing it on a horse’s back in order
to fit most comfortably.
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