Group members:

Warm-up: describe three ways to compute a double integral. Be sure to carefully define your notation and state any hypotheses that are required.

Problem 1. Consider the domain $D=\{(x, y) \mid 0 \leq x \leq 5,-1 \leq y \leq 2\}$ and for a function $f(x, y)$ on D, approximate the volume under $z=f(x, y)$ by the following summation:

$$
S=\sum_{i=1}^{15} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta A
$$

where $\left(x_{i}^{*}, y_{i}^{*}\right)$ are the midpoints of the 15 unit squares making up D and $\Delta A=1$. For which functions below will S yield the exact volume?

$$
f(x, y)=\begin{array}{cccccccc}
x^{2} y & x y^{2} & 5 x^{3} & \pi^{2} & 5 y-5 x & 25 & \pi^{2} e^{3} & \sin (x) \cos (y)
\end{array}
$$

Problem 2. Compute the volume under the graph $z=2 x-4 y^{3}$ over the rectangle

$$
D=\{(x, y) \mid-5 \leq x \leq 4,0 \leq y \leq 3\}
$$

Problem 3. Compute the double integral $\iint_{D} x \sec ^{2}(y) d A$ over the rectangle

$$
D=\left\{(x, y) \mid-2 \leq x \leq 3,0 \leq y \leq \frac{\pi}{4}\right\}
$$

Problem 4. Compute the double integral $\iint_{D} x e^{x y} d A$ over the rectangle

$$
D=\{(x, y) \mid-1 \leq x \leq 2,0 \leq y \leq 1\}
$$

Hint: integrating in one order might be easier than integrating in the order.

Problem 5. Compute the double integral $\iint_{D} \frac{1}{(2 x+3 y)^{2}} d A$ over the rectangle

$$
D=\{(x, y) \mid 0 \leq x \leq 1,1 \leq y \leq 2\}
$$

