Group members:

Warm-up: let $f(x, y)$ be a function defined on the region D between the curves $y=x^{2}$ and $y=2 x$ in the $x y$-plane, pictured here:

Label the figure and set up two iterated integrals which compute the signed volume under $z=f(x, y)$ over the region D.

Problem 1. Find the signed volume under $f(x, y)=x y-x^{2}$ over the region D from the warmup.

Problem 2. Find the volume under the graph of $f(x, y)=x^{2}+y^{2}$ over the square D with corners $(x, y)=(\pm 1, \pm 1)$.

Problem 3. Sketch the region of integration for the following iterated integral and then compute the integral:

$$
\int_{1}^{-1} \int_{x}^{2 x} e^{x+y} d y d x
$$

Problem 4. Sketch the region of integration for the following iterated integral and then compute the integral:

$$
\int_{0}^{2} \int_{1}^{3}|x-2| \sin (y) d x d y
$$

Problem 5. Sketch the region of integration for the following iterated integral and then compute the integral:

$$
\int_{0}^{2} \int_{x}^{2} e^{-y^{2}} d y d x
$$

Problem 6. Set up a double integral representing the volume under $z=2+\cos \left(y^{2}\right)$ over the triangle in the $x y$-plane with vertices $(0,0),(0,2)$ and $(6,2)$. Then solve your double integral to find this volume.

Problem 7. Set up a double integral representing the area between $y=1-x^{2}$ and $y=$ $x^{2}-3$. Then solve your double integral to find the area between these curves.

