Group members:

Warm-up: find the formula for a joint probability distribution representing the probability of choosing a random point (X, Y) uniformly in the unit circle $C=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

Problem 1. Let X and Y be two continuous random variables with joint distribution

$$
f(x, y)= \begin{cases}x+k y^{2}, & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the constant k. Then compute $P\left(0 \leq X \leq \frac{1}{2}\right.$ and $\left.0 \leq Y \leq \frac{1}{2}\right)$.

Problem 2. Let X and Y be two continuous random variables with joint distribution

$$
f(x, y)= \begin{cases}k x^{2} y, & 0 \leq y \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find k.
(b) Find the marginal distributions f_{X} and f_{Y}.
(c) Compute the probability that X is at least $\frac{1}{2}$.
(d) Compute the probability that X is at least twice as large as Y.

Problem 3. Let X and Y be two continuous random variables with joint distribution $f(x, y)=\frac{2}{3}(x+y)^{3}$ on the unit square with vertices $(0,0),(1,0),(0,1)$ and (1, 1). Compute the probability that X and Y sum to more than 1 .

Problem 4. Let X and Y be two continuous random variables with joint distribution

$$
f(x, y)= \begin{cases}6 e^{-(2 x+3 y)}, & x \geq 0, y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent?
(b) Compute $P(X>Y)$.

Problem 5. Let X and Y be two continuous random variables with joint distribution $f(x, y)=x+y$ on the unit square again. Find the following expected values:
(a) $E[X]$
(b) $E\left[Y^{2}\right]$
(c) $E\left[X Y^{2}\right]$

Problem 6. Let X and Y be two continuous random variables with joint distribution

$$
f(x, y)= \begin{cases}6 x y, & 0 \leq x \leq 1,0 \leq y \leq \sqrt{x} \\ 0, & \text { otherwise }\end{cases}
$$

Find the covariance $\operatorname{cov}(X, Y)$.

