# Arithmetic Geometry and Stacky Curves

# Andrew J. Kobin

ajkobin@emory.edu

Clayton State Mathematics Seminar

October 25, 2023



Generalized Fermat Equations

Stacky Curves

Local-Global Principles

Modular Forms

## Introduction

# Believe women.

# Believe your colleagues.

Stop the cruelty.

Generalized Fermat Equations

Stacky Curves

Local-Global Principles

Modular Forms

# **Generalized Fermat Equations**

**Motivation:** Find all integer solutions (x, y, z) to the generalized Fermat equation

$$Ax^p + By^q = Cz^r$$

for  $A, B, C \in \mathbb{Z}$  and  $p, q, r \geq 2$ .

Local-Global Principles

Modular Forms

#### **Generalized Fermat Equations**

**Motivation:** Find integer solutions to  $Ax^p + By^q = Cz^r$ .

# Example ((A, B, C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to  $x^2 + y^2 = z^2$ , with primitive (gcd(x, y, z) = 1) solutions parametrized by

$$(x, y, z) = \left(\frac{s^2 - t^2}{2}, st, \frac{s^2 + t^2}{2}\right)$$

for odd, coprime  $s > t \ge 1$ .

Local-Global Principles

Modular Forms

# **Generalized Fermat Equations**

**Motivation:** Find integer solutions to  $Ax^p + By^q = Cz^r$ .

# Example ((A, B, C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to  $x^2 + y^2 = z^2$ , with primitive (gcd(x, y, z) = 1) solutions parametrized by

$$(x,y,z) = \left(\frac{s^2-t^2}{2}, st, \frac{s^2+t^2}{2}\right) \quad \text{for odd, coprime } s>t\geq 1.$$

P. @p\_blade\_

Wow. Another day as an adult without using the Pythagorean Theorem.

Local-Global Principles

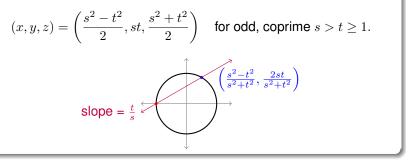
Modular Forms

#### **Generalized Fermat Equations**

**Motivation:** Find integer solutions to  $Ax^p + By^q = Cz^r$ .

# Example ((A, B, C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to  $x^2 + y^2 = z^2$ , with primitive (gcd(x, y, z) = 1) solutions parametrized by



Generalized Fermat Equations

Stacky Curves

Local-Global Principles

Modular Forms

# **Generalized Fermat Equations**

**Motivation:** Find integer solutions to  $Ax^p + By^q = Cz^r$ .

# Example ((A, B, C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are *no* integer solutions to  $x^n + y^n = z^n$  for n > 2.

Local-Global Principles

Modular Forms

# **Generalized Fermat Equations**

**Motivation:** Find integer solutions to  $Ax^p + By^q = Cz^r$ .

# Example ((A, B, C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are *no* integer solutions to  $x^n + y^n = z^n$  for n > 2. Assume *n* is prime. If  $(x_0, y_0, z_0)$  were such a solution, it would determine an elliptic curve

$$\underbrace{\underbrace{}_{E:y^2 = x(x - x_0^n)(x + y_0^n)}}_{\underbrace{}_{E:y^2 = x(x - x_0^n)(x + y_0^n)}}$$

Ribet showed E is not modular. However, Wiles showed all such elliptic curves are modular, a contradiction.

Generalized Fermat Equations

Stacky Curves

Local-Global Principles

Modular Forms

# **Generalized Fermat Equations**

**Takeaway:** Integer solutions to  $Ax^p + By^q = Cz^r$  can be studied using geometry.

Generalized Fermat Equations

Stacky Curves

Local-Global Principles

Modular Forms

#### **Generalized Fermat Equations**

Here are some more known cases of  $Ax^p + By^q = Cz^r$ .

• (Beukers, Darmon–Granville) Let  $\chi = \frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1$ . The equation  $x^p + y^q = z^r$  has infinitely many primitive solutions when  $\chi > 0$  and finitely many when  $\chi < 0$ .

Local-Global Principles

Modular Forms

# **Generalized Fermat Equations**

Here are some more known cases of  $Ax^p + By^q = Cz^r$ .

- (Beukers, Darmon–Granville) Let  $\chi = \frac{1}{p} + \frac{1}{q} + \frac{1}{r} 1$ . The equation  $x^p + y^q = z^r$  has infinitely many primitive solutions when  $\chi > 0$  and finitely many when  $\chi < 0$ .
- (Mordell, Zagier, Edwards) When  $\chi > 0$ , the primitive solutions to  $x^p + y^q = z^r$  may always be parametrized explicitly (as in the (2, 2, 2) case).
- (Fermat, Euler, et al.) The case  $\chi = 0$  only occurs for (2,3,6), (4,4,2), (3,3,3) and permutations of these. In each case, descent proves there are finitely many primitive solutions.
- (2,3,7) was solved by Poonen–Schaeffer–Stoll (2007).
- (2,3,8), (2,3,9) were solved by Bruin (1999, 2004).
- etc.

Generalized Fermat Equations

Stacky Curves

Local-Global Principles

Modular Forms

# **Generalized Fermat Equations**

# Question: How do we count solutions to such equations?

Local-Global Principles

Modular Forms

#### **Generalized Fermat Equations**

Question: How do we count solutions to such equations?

One strategy is to form the surface of (primitive, nontrivial) solutions in 3-dimensional space over  $\mathbb{Z}$ :

$$S = \{(x, y, z) \in \mathbb{Z}^3 \mid Ax^p + By^q = Cz^r, \text{ nontrivial, primitive}\} \subseteq \mathbb{A}^3_{\mathbb{Z}}.$$

Expert version:  $S = \operatorname{Spec}(\mathbb{Z}[x, y, z] / (Ax^p + By^q - Cz^r)) \smallsetminus \{x = y = z = 0\}$ 

Local-Global Principles

Modular Forms

#### **Generalized Fermat Equations**

# $S = \{(x, y, z) \in \mathbb{Z}^3 \mid Ax^p + By^q = Cz^r, \text{ nontrivial, primitive}\}$

Let G be the group of symmetries of S.  $(G = \mathbb{G}_m \cdot (\mu_p \times \mu_q \times \mu_r))$ 

Local-Global Principles

Modular Forms

### **Generalized Fermat Equations**

 $S = \{(x, y, z) \in \mathbb{Z}^3 \mid Ax^p + By^q = Cz^r, \text{ nontrivial, primitive}\}$ 

Let G be the group of symmetries of S.  $(G = \mathbb{G}_m \cdot (\mu_p \times \mu_q \times \mu_r))$ 

We can form the curve X = S/G whose points are exactly the equivalence classes of solutions:

$$\begin{split} X(\mathbb{Z}) &= \{x,y,z \in R \mid Ax^p + By^q = Cz^r, \text{ nontriv., prim.}\}/\sim \\ & \text{where } g \cdot (x,y,z) \sim (x,y,z). \end{split}$$

Upside: these are easier to count than  $S(\mathbb{Z})$ . Downside: the geometry of *X* is bad!

Local-Global Principles

# **Generalized Fermat Equations**

 $S = \{(x, y, z) \in \mathbb{Z}^3 \mid Ax^p + By^q = Cz^r, \text{ nontrivial, primitive}\}$ 

Let G be the group of symmetries of S.  $(G = \mathbb{G}_m \cdot (\mu_p \times \mu_q \times \mu_r))$ 

We can form the stacky curve  $\mathcal{X} = [S/G]$  whose points remember the symmetries of each solution:

 $\mathcal{X}(\mathbb{Z})$ : objects: nontriv., prim. solutions to  $Ax^p + By^q = Cz^r$ morphisms:  $(x, y, z) \xrightarrow{g} g \cdot (x, y, z)$ .

Upside: these are easier to count than  $S(\mathbb{Z})$ . Downside: none - stacks are awesome!

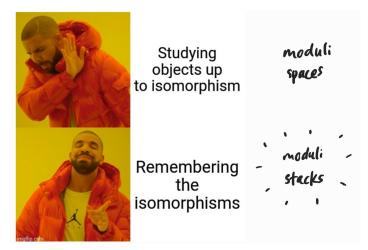
| Generalized | Fermat | Equations |
|-------------|--------|-----------|
|             |        |           |

Local-Global Principles

Modular Forms

#### Stacks

Rather than give a technical definition of a stack, here's a meme:



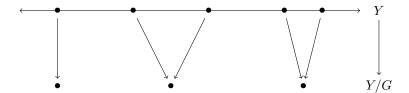
Local-Global Principles

Modular Forms

### Stacks

# Example

For a group *G* acting on a space *Y*, we can form the quotient space Y/G whose points are the equivalence classes of points under *G*:



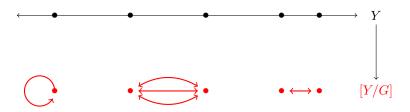
| Generalized | Fermat | Equations |
|-------------|--------|-----------|
|             |        |           |

Local-Global Principles

#### Stacks

#### Example

For a group G acting on a space Y, we can form the **quotient stack** [Y/G] whose points are the **groupoid of** G-orbits:



Special case: the classifying stack [\*/G] = BG:



| Generalized | Fermat | Equations |
|-------------|--------|-----------|
|             |        |           |

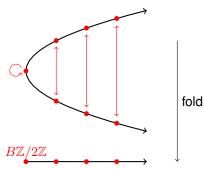
Local-Global Principles

Modular Forms

# Stacks

#### Example

For the parabola  $X:y^2=x,$  groupoids remember automorphisms like  $(x,y)\leftrightarrow (x,-y)$ 



Here, each downstairs "point" is obtained by collapsing upstairs points together and identifying morphisms.

Local-Global Principles

Modular Forms



Here's an informal definition of a stacky curve:

A stacky curve  $\mathcal{X}$  consists of an ordinary curve X, together with a finite number of marked points  $P_1, \ldots, P_n$ , each of which is decorated with a number  $e_i$  = order of the group of symmetries of  $P_i$ .



Local-Global Principles

Modular Forms

# **Stacky Curves**

# Here's a cartoon of a stacky curve with coarse space $\mathbb{P}^1$ :



Local-Global Principles

Modular Forms

#### **Stacky Curves**

Here's a cartoon of our stacky curve [S/G], where S = primitive integer solutions to  $Ax^p + By^q = Cz^r$ :



| Generalized I | Fermat | Equations |
|---------------|--------|-----------|
|               |        |           |

Local-Global Principles

Modular Forms

# Generalized Fermat Equations, Revisited

To find solutions to  $Ax^p + By^q = Cz^r$ , we can exploit the geometry of  $\mathcal{X} = [S/G]$ :

| Generalized Fermat Equations | Stacky Curves | Local-Global Principles | Modular Forms |
|------------------------------|---------------|-------------------------|---------------|
|                              | 000000000000  |                         |               |

#### Generalized Fermat Equations, Revisited

To find solutions to  $Ax^p + By^q = Cz^r$ , we can exploit the geometry of  $\mathcal{X} = [S/G]$ :

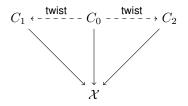


(1) Find a nice map  $C_0 \rightarrow \mathcal{X}$  from a curve  $C_0$  whose points are easy to find (e.g. a conic).

| Generalized Fermat Equations | Stacky Curves | Local-Global Principles | Modular Forms |
|------------------------------|---------------|-------------------------|---------------|
|                              | 0000000000000 |                         |               |

#### Generalized Fermat Equations, Revisited

To find solutions to  $Ax^p + By^q = Cz^r$ , we can exploit the geometry of  $\mathcal{X} = [S/G]$ :



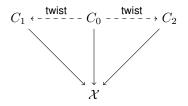
(1) Find a nice map  $C_0 \rightarrow \mathcal{X}$  from a curve  $C_0$  whose points are easy to find (e.g. a conic).

(2) Compute all twists of  $C_0$  and their points.

| Generalized Fermat Equations | Stacky Curves | Local-Global Principles | Modular Forms |
|------------------------------|---------------|-------------------------|---------------|
|                              | 0000000000000 |                         |               |

#### Generalized Fermat Equations, Revisited

To find solutions to  $Ax^p + By^q = Cz^r$ , we can exploit the geometry of  $\mathcal{X} = [S/G]$ :



(1) Find a nice map  $C_0 \rightarrow \mathcal{X}$  from a curve  $C_0$  whose points are easy to find (e.g. a conic).

(2) Compute all twists of  $C_0$  and their points.

(3) Use *descent* to identify points on  $\mathcal{X}$ .

Generalized Fermat Equations

Stacky Curves

Local-Global Principles

Modular Forms

# Generalized Fermat Equations, Revisited

#### Example

For  $\mathcal{X}: x^2 + y^2 = z^2$ , there is an étale map

and  $\mathbb{P}^1$  has infinitely many points which descend, so there are infinitely many primitive Pythagorean triples.

 $\mathbb{P}^1$ 

X

| Generalized Ferm | at Equations |
|------------------|--------------|
| 0000000000       |              |

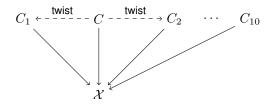
Local-Global Principles

Modular Forms

# **Generalized Fermat Equations, Revisited**

# Example (Poonen–Schaeffer–Stoll)

For  $\mathcal{X}: x^2 + y^3 = z^7$ , there is an étale map



where *C* is the Klein quartic, defined by  $x^3y + y^3 + x = 0$ . Descending points from *C* and its 10 twists gives 16 primitive solutions:

| Generalized | Fermat | Equations |
|-------------|--------|-----------|
|             |        |           |

Local-Global Principles

Modular Forms

#### Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if  $X(\mathbb{Q}) \neq \emptyset$  is equivalent to  $X(\mathbb{Q}_p) \neq \emptyset$  for all completions  $\mathbb{Q}_p$ ,  $p \leq \infty$ .

| Generalized | Fermat | Equations |
|-------------|--------|-----------|
|             |        |           |

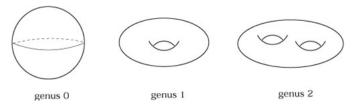
Local-Global Principles

Modular Forms

#### Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if  $X(\mathbb{Q}) \neq \emptyset$  is equivalent to  $X(\mathbb{Q}_p) \neq \emptyset$  for all completions  $\mathbb{Q}_p$ ,  $p \leq \infty$ .

- Let g = g(X) be the genus of X. It is known that:
  - (Hasse–Minkowski) If g = 0, the LGP holds for X.
  - There are counterexamples to the LGP for all g > 0. For example,  $X : 2y^2 = 1 - 17x^4$ .



| Generalized Fermat Equation |  |
|-----------------------------|--|
|                             |  |

Local-Global Principles

Modular Forms

# Local-Global Principle for Stacky Curves

For a stacky curve  $\mathcal{X}$ , we pose the *local-global principle for integral points*:

is  $\mathcal{X}(\mathbb{Z}) \neq \varnothing$  equivalent to  $\mathcal{X}(\mathbb{Z}_p) \neq \varnothing$  for all completions  $\mathbb{Z}_p$ ?

Local-Global Principles

Modular Forms

### Local-Global Principle for Stacky Curves

For a stacky curve  $\mathcal{X}$ , we pose the *local-global principle for integral points*:

is  $\mathcal{X}(\mathbb{Z}) \neq \emptyset$  equivalent to  $\mathcal{X}(\mathbb{Z}_p) \neq \emptyset$  for all completions  $\mathbb{Z}_p$ ?

This time, the genus  $g = g(\mathcal{X})$  can be *rational*:

$$g(\mathcal{X}) = g(X) + \frac{1}{2} \sum_{i=1}^{n} \frac{e_i - 1}{e_i}$$

where X is the coarse space and  $e_1, \ldots, e_n$  are the orders of the automorphisms groups at the finite number of stacky points.

When  ${\mathcal X}$  is a wild stacky curve, I proved a more general formula for  $g({\mathcal X}).$ 

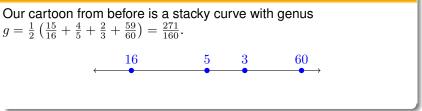
| Generalized | Fermat | Equations |
|-------------|--------|-----------|
|             |        |           |

Local-Global Principles

Modular Forms

# Local-Global Principle for Stacky Curves

#### Example



#### Example

Our stacky curve [S/G], where S = primitive integer solutions to  $Ax^p + By^q = Cz^r$ , has genus  $g = \frac{1}{2} \left(3 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}\right)$ . For example, the (2, 3, 7) curve has genus  $g = \frac{85}{84}$ .

| Generalized Fermat Equations | Stacky Curves |
|------------------------------|---------------|
|                              |               |

Local-Global Principles

#### Local-Global Principle for Stacky Curves

For 
$$\mathcal{X} = [S/G]$$
 where  $S : Ax^p + By^q = Cz^r$ ,  $g = \frac{1}{2} \left(3 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}\right)$ .

# Theorem (Bhargava–Poonen)

• If  $g < \frac{1}{2}$ , the LGP holds.

2 There are counterexamples to the LGP when  $g = \frac{1}{2}$ .

# Theorem (Darmon–Granville)

In the (2,2,n) case, with  $g = \frac{n-1}{n}$ , there are counterexamples to the LGP.

Joint work with Duque-Rosero, Keyes, Roy, Sankar, Wang (in progress): a complete solution in the (2, 2, n) case.

| Generalized Fermat Equations | Stacky Curves | Local-Global Principles | Modular Forms |
|------------------------------|---------------|-------------------------|---------------|
|                              |               |                         |               |

# Another Example of a Stacky Curve

Here's another important stacky curve:



Fact:  $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$ , the compactified moduli stack of elliptic curves.

| Generalized | Fermat | Equations |  |
|-------------|--------|-----------|--|
|             |        |           |  |

Local-Global Principles

Modular Forms

# Another Example of a Stacky Curve

Here's another important stacky curve:



Fact:  $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$ , the compactified moduli stack of elliptic curves.



Generalized Fermat Equations

Stacky Curves 00000000000000 Local-Global Principles

Modular Forms

# Another Example of a Stacky Curve

Here's another important stacky curve:



**Fact:**  $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$ , the compactified moduli stack of elliptic curves.

Fact 2: Modular curves give rise to modular forms.



| Generalized | Fermat | Equations |
|-------------|--------|-----------|
|             |        |           |

Local-Global Principles

Modular Forms

# **Modular Forms**

Let  $\mathfrak{h} = \{z \in \mathbb{C} : \operatorname{im}(z) > 0\}$  be the upper half-plane in  $\mathbb{C}$ .

# Definition

A modular form of weight 2k is a holomorphic function  $f:\mathfrak{h}\to\mathbb{C}$  such that

• For all 
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), f(z) = (cz+d)^{-2k}f(gz).$$

2) f is holomorphic at  $\infty$ .

| Generalized | Fermat | Equations |
|-------------|--------|-----------|
|             |        |           |

Local-Global Principles

Modular Forms

# **Modular Forms**

Let  $\mathfrak{h} = \{z \in \mathbb{C} : \operatorname{im}(z) > 0\}$  be the upper half-plane in  $\mathbb{C}$ .

# Definition

A modular form of weight 2k is a holomorphic function  $f : \mathfrak{h} \to \mathbb{C}$  such that

• For all 
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), f(z) = (cz+d)^{-2k}f(gz).$$

2) f is holomorphic at  $\infty$ .

Informal version: modular forms are highly symmetric holomorphic functions on the upper half-plane in  $\mathbb{C}$ .



Local-Global Principles

Modular Forms

#### **Modular Forms**

Given a modular form  $f:\mathfrak{h}\to\mathbb{C},$  we can define a differential form  $\omega=f(z)\,dz^k.$ 

By the symmetry of f,  $\omega$  is not just defined on the upper half-plane, but on the quotient  $\mathfrak{h}/SL_2(\mathbb{Z})$ .

Compactifying by adding a point at  $\infty$ , this quotient  $\overline{\mathfrak{h}/SL_2(\mathbb{Z})}$  becomes isomorphic to  $\mathcal{X}(1)$ , the moduli stack of elliptic curves.

Upshot: modular forms act like "functions" on the moduli stack  $\mathcal{X}(1)$ .

This allows one to define modular forms over any field K, as differential forms on the moduli stack  $\mathcal{X}(1)$  of elliptic curves over K.

| Generalized F | ermat | Equations |
|---------------|-------|-----------|
|               |       |           |

Local-Global Principles

Modular Forms

#### Modular Forms Mod p

# Joint work with D. Zureick-Brown (in progress): describe the space of mod p modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over $\mathbb{F}_p$ .

| Generalized Fermat Equations | Stacky Curves | Local-Global Principles | Modular Forms |
|------------------------------|---------------|-------------------------|---------------|
|                              |               |                         |               |

#### Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of mod p modular forms using the stacky structure of  $\mathcal{X}(1)$  and other modular curves over  $\mathbb{F}_p$ .

For p > 3, the story for  $\mathcal{X}(1)$  is the same as over  $\mathbb{C}$ :



and  $\bigoplus \mathcal{M}_k \cong \mathbb{F}_p[x_4, x_6]$  (originally due to Edixhoven).

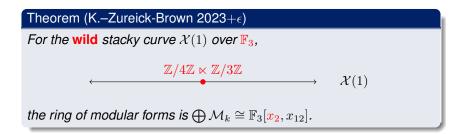
However, over  $\mathbb{F}_2$  and  $\mathbb{F}_3$ , the stacky structure of  $\mathcal{X}(1)$  looks different:

Local-Global Principles

Modular Forms

# **Modular Forms Mod** 3

# Joint work with D. Zureick-Brown (in progress): describe the space of mod p modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over $\mathbb{F}_p$ .

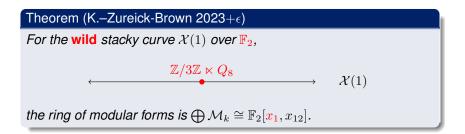


Local-Global Principles

Modular Forms

# Modular Forms Mod 2

# Joint work with D. Zureick-Brown (in progress): describe the space of mod p modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over $\mathbb{F}_p$ .



Local-Global Principles

Modular Forms

Thank you! Questions?