Root Stacks in Characteristic p

Andrew J. Kobin

ak5ah@virginia.edu

Explicit Methods in Characteristic *p* at JMM 2020

January 16, 2020

Introduction

Common problem: all sorts of information is lost when we consider quotient objects and/or singular objects.

However, many of these properties are recovered when we pass to the language of *orbifolds*.

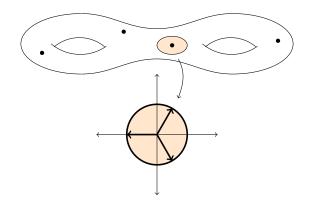
e.g. invariants of modular curves $X_0(N)$ have geometric meaning when $X_0(N)$ is treated as an orbifold.

Goal: Classify stacky curves (= orbifold curves) in char. *p* (thesis work - preprint available!)

Complex Orbifolds

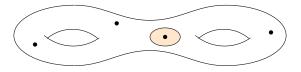
Definition

A **complex orbifold** is a topological space admitting an atlas $\{U_i\}$ where each $U_i \cong \mathbb{C}^n/G_i$ for a finite group G_i , satisfying compatibility conditions (think: manifold atlas but with extra info).



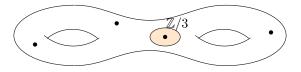
There's also a version of orbifold in the 'algebraic category'

Technical definition: blah blah blah Deligne–Mumford stack



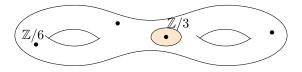
There's also a version of orbifold in the 'algebraic category'

Technical definition: blah blah blah Deligne–Mumford stack



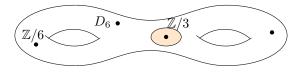
There's also a version of orbifold in the 'algebraic category'

Technical definition: blah blah blah Deligne–Mumford stack



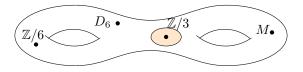
There's also a version of orbifold in the 'algebraic category'

Technical definition: blah blah blah Deligne–Mumford stack



There's also a version of orbifold in the 'algebraic category'

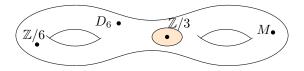
Technical definition: blah blah blah Deligne–Mumford stack



There's also a version of orbifold in the 'algebraic category'

Technical definition: blah blah blah Deligne–Mumford stack

Non-technical definition: smooth variety/scheme with a finite stabilizer group attached at each point

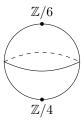


Focus on orbifold curves for the rest of the talk

An Example

Example

The (compactifed) moduli space of complex elliptic curves is an orbifold \mathbb{P}^1 with a generic $\mathbb{Z}/2$ and a special $\mathbb{Z}/4$ and $\mathbb{Z}/6$.



Key fact: over \mathbb{C} , all stabilizers are *cyclic*.

So orbifolds can be locally modeled by a root stack: charts look like

 $U \cong [\operatorname{Spec} A/\mu_n]$

where $A = k[y]/(y^n - x_0)$ and μ_n is the group of *n*th roots of unity.

(Think: degree n branched cover mod μ_n -action, but remember the action.)

More rigorously:

Definition (Cadman, Abramovich–Olsson–Vistoli)

Let X be a variety and $L \to X$ a line bundle with section $s : X \to L$. The **nth root stack** of X along (L, s) is the fibre product

Here, $[\mathbb{A}^1/\mathbb{G}_m]$ is the classifying stack for pairs (L, s).

Interpretation: $\sqrt[n]{(L,s)/X}$ admits a canonical tensor *n*th root of (L,s), i.e. (M,t) such that $M^{\otimes n} = L$ and $t^n = s$ (after pullback).

Theorem (Geraschenko–Satriano '15)

Every smooth separated **tame** Deligne–Mumford stack of finite type with trivial generic stabilizer is* a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space and a finite list of numbers corresponding to the orders of cyclic stabilizers at a finite number of stacky points.

Theorem (Geraschenko–Satriano '15)

Every smooth separated **tame** Deligne–Mumford stack of finite type with trivial generic stabilizer is* a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space and a finite list of numbers corresponding to the orders of cyclic stabilizers at a finite number of stacky points.

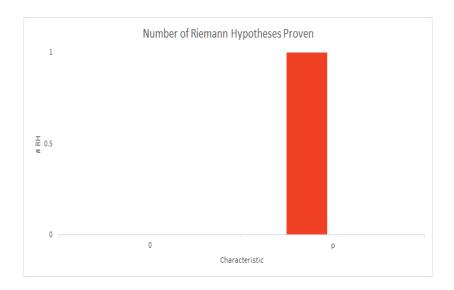
What happens with wild stacky curves in char. p?

$|\mathbb{F}_p| << |\mathbb{C}|$

$$(x+y)^p = x^p + y^p$$
 (obviously)

AS Root Stacks

Interlude: Why Characteristic p?



Things get wild (e.g. $\pi_1(\mathbb{A}^1) = (-/)$

In trying to classify **wild** stacky curves in char. p, we face the following problems:

- (1) Stabilizer groups need not be cyclic (or even abelian)
- (2) Cyclic $\mathbb{Z}/p^n\mathbb{Z}$ -covers of curves occur in families
- (3) Root stacks don't work
 - Finding $M^{\otimes p}$ is a problem
 - $[\mathbb{A}^1/\mathbb{G}_m] \to [\mathbb{A}^1/\mathbb{G}_m], x \mapsto x^p$ is a problem

Key case: cyclic $\mathbb{Z}/p\mathbb{Z}$ -stabilizers

Idea: replace tame cyclic covers $y^n = f(x)$ with wild cyclic covers $y^p - y = f(x)$.

More specifically: Artin–Schreier theory classifies cyclic degree *p*-covers of curves in terms of the ramification jump (e.g. if $f(x) = x^m$ then *m* is the jump).

This suggests introducing wild stacky structure using the local model

$$U = [\operatorname{Spec} A/(\mathbb{Z}/p)]$$

where $A = k[y]/(y^p - y - f(x))$ and \mathbb{Z}/p acts additively.

$$\begin{array}{ccc} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] & & x \\ \downarrow & & \downarrow & & \downarrow \\ X & & & & [\mathbb{A}^1/\mathbb{G}_m] & & x^n \end{array}$$

$$\begin{array}{ccc} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] & & [u,v] \\ \downarrow & & \downarrow & & \downarrow \\ X & & & & \downarrow & & \downarrow \\ & & & & & & [\mathbb{P}^1/\mathbb{G}_a] & & & [u^p,v^p-vu^{p-1}] \end{array}$$

$$\begin{array}{c} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] & \qquad [u,v] \\ \downarrow & \downarrow & \qquad \downarrow \\ X & \xrightarrow{(L,s,f)} & [\mathbb{P}^1/\mathbb{G}_a] & \qquad [u^p,v^p-vu^{p-1}] \end{array}$$

$$\begin{array}{ccc} \wp_1^{-1}((L,s,f)/X) & \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] & & [u,v] \\ & \downarrow & & \downarrow & & \downarrow \\ & X & & & & \downarrow & & \downarrow \\ & X & & & & & [\mathbb{P}^1/\mathbb{G}_a] & & & [u^p,v^p-vu^{p-1}] \end{array}$$

Definition (K.)

Fix $m \ge 1$. Let X be a variety, $L \to X$ a line bundle and $s : X \to L$ and $f : X \to L^{\otimes m}$ two sections not vanishing simultaneously. The **Artin–Schreier root stack** of X with jump m along (L, s, f) is the fibre product

$$\begin{array}{ccc} \wp_m^{-1}((L,s,f)/X) \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] & [u,v] \\ & \downarrow & & \downarrow \\ & X \xrightarrow{(L,s,f)} [\mathbb{P}(1,m)/\mathbb{G}_a] & [u^p,v^p-vu^{m(p-1)}] \end{array}$$

where

- $\mathbb{P}(1,m)$ is the weighted projective line with weights (1,m)
- $\mathbb{G}_a = (k, +)$, acting additively
- $[\mathbb{P}(1,m)/\mathbb{G}_a]$ is the classifying stack for triples (L,s,f) up to the principal part of f.

$$\begin{split} \wp_m^{-1}((L,s,f)/X) & \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] & [u,v] \\ & \downarrow & \downarrow & \downarrow \\ X & \xrightarrow{(L,s,f)} [\mathbb{P}(1,m)/\mathbb{G}_a] & [u^p,v^p-vu^{m(p-1)}] \end{split}$$

Interpretation: $\wp_m^{-1}((L, s, f)/X)$ admits a canonical *p*th root of *L*, i.e. a line bundle *M* such that $M^{\otimes p} = L$, and an AS root of *s*.

Key example:

Example (K.)

Consider the AS cover

$$Y : y^{p} - y = x^{-m}$$

$$/p \downarrow$$

$$\mathbb{P}^{1} = \operatorname{Proj} k[x_{0}, x_{1}]$$

Then $\wp_m^{-1}((\mathcal{O}(1), x_0, x_1^m)/\mathbb{P}^1) \cong [Y/(\mathbb{Z}/p)].$

 \mathbb{Z}

In general, every AS root stack is étale-locally isomorphic to such an "elementary AS root stack".

Classification of (Some) Wild Stacky Curves

So let's classify us some wild stacky curves!

Theorem 1 (K.)

Every Galois cover of curves $\varphi : Y \to X$ with an inertia group \mathbb{Z}/p factors étale-locally through an Artin–Schreier root stack $\wp_m^{-1}((L,s,f)/X)$.

Informal consequence: there are infinitely many non-isomorphic stacky curves over \mathbb{P}^1 with a single stacky point of order p.

This phenomenon only occurs in char. p.

Classification of (Some) Wild Stacky Curves

Main result:

Theorem 2 (K.)

Every stacky curve \mathcal{X} with a stacky point of order p is étale-locally isomorphic to an Artin–Schreier root stack $\wp_m^{-1}((L, s, f)/U)$ over an open subscheme U of the coarse space of \mathcal{X} .

This even holds globally if \mathcal{X} has coarse space \mathbb{P}^1 :

Theorem 3 (K.)

If \mathcal{X} has coarse space \mathbb{P}^1 and all stacky points of \mathcal{X} have order p, then $\mathcal{X} \cong \wp_m^{-1}((L, s, f)/\mathbb{P}^1)$ for some (m, p) = 1 and (L, s, f).

However, this fails in general.

What about \mathbb{Z}/p^2 -covers, stacky points of order p^2 , and beyond?

For cyclic stabilizer groups \mathbb{Z}/p^n , Artin–Schreier theory is subsumed by **Artin–Schreier–Witt theory**:

- AS covers $y^p y = f(x)$ are replaced by Witt vector equations $\underline{y}^p \underline{y} = (f_0(\underline{x}), \dots, f_n(\underline{x}))$
- Covers are characterized by sequences of ramification jumps
- Local structure is $U = [\operatorname{Spec} A/(\mathbb{Z}/p^n)]$ where $A = k[\underline{y}]/(\underline{y}^p \underline{y} \underline{f})$

This local structure can be formally introduced using **Artin–Schreier–Witt root stacks**:

$$\begin{array}{c} \wp_m^{-1}((L,s,f)/X) \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] \\ \downarrow & \qquad \qquad \downarrow \wp_m \\ X \xrightarrow{(L,s,f)} & [\mathbb{P}(1,m)/\mathbb{G}_a] \end{array}$$

where

- \mathbb{W}_n is the ring of length n Witt vectors
- $\overline{\mathbb{W}}_n(\bar{m})$ is a stacky compactification of \mathbb{W}_n with weights $\bar{m} = (m_1, \dots, m_n)$
- $[\overline{\mathbb{W}}_n(\bar{m})/\overline{\mathbb{W}}_n]$ classifies tuples (L, s, f_0, \dots, f_n) up to the principal part of the f_i .

This local structure can be formally introduced using **Artin–Schreier–Witt root stacks**:

where

- \mathbb{W}_n is the ring of length n Witt vectors
- $\overline{\mathbb{W}}_n(\bar{m})$ is a stacky compactification of \mathbb{W}_n with weights $\bar{m} = (m_1, \dots, m_n)$
- $[\overline{\mathbb{W}}_n(\bar{m})/\overline{\mathbb{W}}_n]$ classifies tuples (L, s, f_0, \dots, f_n) up to the principal part of the f_i .

This local structure can be formally introduced using **Artin–Schreier–Witt root stacks**:

where

- \mathbb{W}_n is the ring of length *n* Witt vectors
- $\overline{\mathbb{W}}_n(\bar{m})$ is a stacky compactification of \mathbb{W}_n with weights $\bar{m} = (m_1, \dots, m_n)$
- $[\overline{\mathbb{W}}_n(\bar{m})/\overline{\mathbb{W}}_n]$ classifies tuples (L, s, f_0, \dots, f_n) up to the principal part of the f_i .

This local structure can be formally introduced using **Artin–Schreier–Witt root stacks**:

$$\begin{split} \Psi_{\bar{m}}^{-1}((L,s,f_0,\ldots,f_n)/X) &\longrightarrow [\overline{\mathbb{W}}_n(\bar{m})/\mathbb{W}_n] \\ & \downarrow \\ & \downarrow \\ & X \xrightarrow{(L,s,f_0,\ldots,f_n)} [\overline{\mathbb{W}}_n(\bar{m})/\mathbb{W}_n] \end{split}$$

where

- \mathbb{W}_n is the ring of length n Witt vectors
- $\overline{\mathbb{W}}_n(\bar{m})$ is a stacky compactification of \mathbb{W}_n with weights $\bar{m} = (m_1, \dots, m_n)$
- $[\overline{\mathbb{W}}_n(\bar{m})/\overline{\mathbb{W}}_n]$ classifies tuples (L, s, f_0, \dots, f_n) up to the principal part of the f_i .

Thank you!