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Introduction

Common problem: all sorts of information is lost when we consider
quotient objects and/or singular objects.

However, many of these properties are recovered when we pass to
the language of orbifolds.

e.g. invariants of modular curves X0(N) have geometric meaning
when X0(N) is treated as an orbifold.

Goal: Classify stacky curves (= orbifold curves) in char. p (thesis
work - preprint available!)
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Complex Orbifolds

Definition

A complex orbifold is a topological space admitting an atlas {Ui}
where each Ui

∼= Cn/Gi for a finite group Gi, satisfying compatibility
conditions (think: manifold atlas but with extra info).
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Algebraic Orbifolds

There’s also a version of orbifold in the ‘algebraic category’

Technical definition: blah blah blah Deligne–Mumford stack

Non-technical definition: smooth variety/scheme with a finite stabilizer
group attached at each point
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An Example

Example

The (compactifed) moduli space of complex elliptic curves is an
orbifold P1 with a generic Z/2 and a special Z/4 and Z/6.

Z/6

Z/4
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Root Stacks

Key fact: over C, all stabilizers are cyclic.

So orbifolds can be locally modeled by a root stack: charts look like

U ∼= [SpecA/µn]

where A = k[y]/(yn − x0) and µn is the group of nth roots of unity.

(Think: degree n branched cover mod µn-action, but remember the
action.)
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Root Stacks

More rigorously:

Definition (Cadman, Abramovich–Olsson–Vistoli)

Let X be a variety and L→ X a line bundle with section s : X → L.
The nth root stack of X along (L, s) is the fibre product

n
√

(L, s)/X [A1/Gm]

X [A1/Gm]

x

xn
(L, s)

Here, [A1/Gm] is the classifying stack for pairs (L, s).

Interpretation: n
√

(L, s)/X admits a canonical tensor nth root of
(L, s), i.e. (M, t) such that M⊗n = L and tn = s (after pullback).
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Root Stacks

Theorem (Geraschenko–Satriano ‘15)

Every smooth separated tame Deligne–Mumford stack of finite type
with trivial generic stabilizer is∗ a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space
and a finite list of numbers corresponding to the orders of cyclic
stabilizers at a finite number of stacky points.

What happens with wild stacky curves in char. p?
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Interlude: Why Characteristic p?

|Fp| << |C|
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Interlude: Why Characteristic p?

(x+ y)p = xp + yp (obviously)
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Interlude: Why Characteristic p?

Things get wild (e.g. π1(A1) = )
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Artin–Schreier Root Stacks

In trying to classify wild stacky curves in char. p, we face the following
problems:
(1) Stabilizer groups need not be cyclic (or even abelian)
(2) Cyclic Z/pnZ-covers of curves occur in families
(3) Root stacks don’t work

Finding M⊗p is a problem
[A1/Gm] → [A1/Gm], x 7→ xp is a problem

Key case: cyclic Z/pZ-stabilizers
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Artin–Schreier Root Stacks

Idea: replace tame cyclic covers yn = f(x) with wild cyclic covers
yp − y = f(x).

More specifically: Artin–Schreier theory classifies cyclic degree
p-covers of curves in terms of the ramification jump (e.g. if
f(x) = xm then m is the jump).

This suggests introducing wild stacky structure using the local model

U = [SpecA/(Z/p)]

where A = k[y]/(yp − y − f(x)) and Z/p acts additively.
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [A1/Gm]

X [A1/Gm]

x

xn
(L, s)
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s)
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s, f)
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Artin–Schreier Root Stacks

How do we do it?

℘−1
1 ((L, s, f)/X) [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s, f)
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Artin–Schreier Root Stacks

Definition (K.)

Fix m ≥ 1. Let X be a variety, L→ X a line bundle and s : X → L
and f : X → L⊗m two sections not vanishing simultaneously. The
Artin–Schreier root stack of X with jump m along (L, s, f) is the
fibre product

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

[u, v]

[up, vp − vum(p−1)]
(L, s, f)

where
P(1,m) is the weighted projective line with weights (1,m)

Ga = (k,+), acting additively
[P(1,m)/Ga] is the classifying stack for triples (L, s, f) up to the
principal part of f .
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Artin–Schreier Root Stacks

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

[u, v]

[up, vp − vum(p−1)]
(L, s, f)

Interpretation: ℘−1
m ((L, s, f)/X) admits a canonical pth root of L, i.e.

a line bundle M such that M⊗p = L, and an AS root of s.
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Artin–Schreier Root Stacks

Key example:

Example (K.)

Consider the AS cover

P1 = Proj k[x0, x1]

Y : yp − y = x−m

Z/p

Then ℘−1
m ((O(1), x0, x

m
1 )/P1) ∼= [Y/(Z/p)].

In general, every AS root stack is étale-locally isomorphic to such an
“elementary AS root stack”.
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Classification of (Some) Wild Stacky Curves

So let’s classify us some wild stacky curves!

Theorem 1 (K.)

Every Galois cover of curves ϕ : Y → X with an inertia group Z/p
factors étale-locally through an Artin–Schreier root stack
℘−1
m ((L, s, f)/X).

Informal consequence: there are infinitely many non-isomorphic
stacky curves over P1 with a single stacky point of order p.

This phenomenon only occurs in char. p.
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Classification of (Some) Wild Stacky Curves

Main result:

Theorem 2 (K.)

Every stacky curve X with a stacky point of order p is étale-locally
isomorphic to an Artin–Schreier root stack ℘−1

m ((L, s, f)/U) over an
open subscheme U of the coarse space of X .

This even holds globally if X has coarse space P1:

Theorem 3 (K.)

If X has coarse space P1 and all stacky points of X have order p,
then X ∼= ℘−1

m ((L, s, f)/P1) for some (m, p) = 1 and (L, s, f).

However, this fails in general.



Introduction Root Stacks AS Root Stacks Classification

Generalizations

What about Z/p2-covers, stacky points of order p2, and beyond?

For cyclic stabilizer groups Z/pn, Artin–Schreier theory is subsumed
by Artin–Schreier–Witt theory:

AS covers yp − y = f(x) are replaced by Witt vector equations
yp − y = (f0(x), . . . , fn(x))

Covers are characterized by sequences of ramification jumps
Local structure is U = [SpecA/(Z/pn)] where
A = k[y]/(yp − y− f)
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Generalizations

This local structure can be formally introduced using
Artin–Schreier–Witt root stacks:

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

℘m
(L, s, f)

where
Wn is the ring of length n Witt vectors
Wn(m̄) is a stacky compactification of Wn with weights
m̄ = (m1, . . . ,mn)

[Wn(m̄)/Wn] classifies tuples (L, s, f0, . . . , fn) up to the principal
part of the fi.

(In progress) Final steps are to classify stacky curves with
Z/pn-structure using this construction.
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Generalizations

This local structure can be formally introduced using
Artin–Schreier–Witt root stacks:

Ψ−1
m̄ ((L, s, f0, . . . , fn)/X) [Wn(m̄)/Wn]

X [Wn(m̄)/Wn]

Ψm̄
(L, s, f0, . . . , fn)

where
Wn is the ring of length n Witt vectors
Wn(m̄) is a stacky compactification of Wn with weights
m̄ = (m1, . . . ,mn)

[Wn(m̄)/Wn] classifies tuples (L, s, f0, . . . , fn) up to the principal
part of the fi.

(In progress) Final steps are to classify stacky curves with
Z/pn-structure using this construction.
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Generalizations

Thank you!
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