Stacky Curves in Characteristic *p*

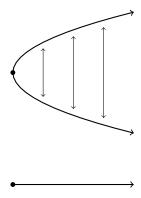
Andrew J. Kobin

akobin@ucsc.edu

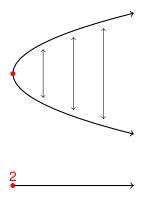
Madison Moduli Weekend

September 27, 2020

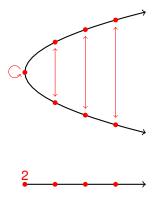
Common problem: all sorts of information is lost when we consider quotient objects and/or singular objects.



Solution: Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).

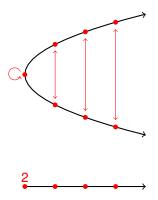


Solution: Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).



Example: For the plane curve $X: y^2 - x = 0$, stacks remember automorphisms like $(x,y) \leftrightarrow (x,-y)$ using groupoids

Solution: Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).

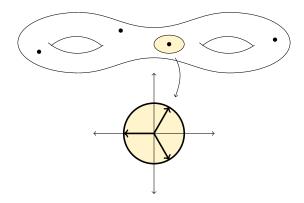


Goal: Classify stacky curves (= orbifold curves) in char. *p* (First steps: "Artin–Schreier Root Stacks", arXiv:1910.03146)

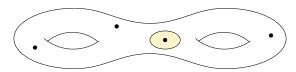
Complex Orbifolds

Definition

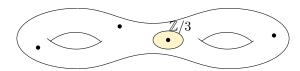
A **complex orbifold** is a topological space admitting an atlas $\{U_i\}$ where each $U_i \cong \mathbb{C}^n/G_i$ for a finite group G_i , satisfying compatibility conditions (think: manifold atlas but with extra info).



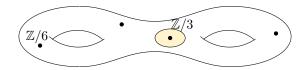
There's also a version of orbifold in algebraic geometry: an **algebraic** stack.



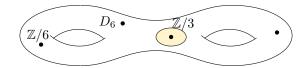
There's also a version of orbifold in algebraic geometry: an **algebraic** stack.



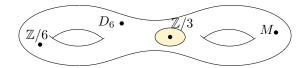
There's also a version of orbifold in algebraic geometry: an **algebraic** stack.



There's also a version of orbifold in algebraic geometry: an **algebraic** stack.

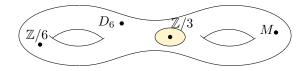


There's also a version of orbifold in algebraic geometry: an **algebraic** stack.



There's also a version of orbifold in algebraic geometry: an **algebraic** stack.

Important class of examples we will focus on are **Deligne–Mumford stacks** \approx smooth varieties or schemes with a finite automorphism group attached at each point.

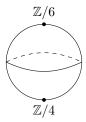


Focus on curves for the rest of the talk

An Example

Example

The (compactifed) moduli space of complex elliptic curves is a stacky \mathbb{P}^1 with a generic $\mathbb{Z}/2$ and a special $\mathbb{Z}/4$ and $\mathbb{Z}/6$.



Consequence: can deduce dimension formulas for modular forms from Riemann–Roch formula for stacks.

Goal: Classify stacky curves in char. p.

Main obstacle to overcome:

- In char. 0, local structure is determined by a cyclic group action.
- In char. p, this is not enough information need more invariants than just the order of a cyclic group.

Results (K. '20):

Introduction

- Every p-cover of curves factors étale-locally through an Artin-Schreier root stack.
- Every stacky curve with order p automorphism group is étale-locally an Artin-Schreier root stack.
- For any algebraic curve X, there are infinitely many non-isomorphic Deligne–Mumford stacks with coarse space X and degree p automorphism groups at the same sets of points.

Key fact: in char. 0, all stabilizers (automorphism groups) are cyclic.

So stacky curves can be locally modeled by a *root stack*: charts look like

$$U \cong [\operatorname{Spec} A/\mu_n]$$

where $A=K[y]/(y^n-\alpha)$ and μ_n is the group of nth roots of unity.

(Think: degree n branched cover mod μ_n -action, but remember the action using groupoids.)

More rigorously:

Definition (Cadman '07, Abramovich-Olsson-Vistoli '08)

Let X be a scheme and $L \to X$ a line bundle with section $s: X \to L$. The **nth root stack** of X along (L,s) is the fibre product

$$\sqrt[n]{(L,s)/X} \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \quad x$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$X \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \quad x^n$$

Here, $[\mathbb{A}^1/\mathbb{G}_m]$ is the classifying stack for pairs (L,s).

Interpretation: $\sqrt[n]{(L,s)/X}$ admits a canonical tensor nth root of (L,s), i.e. (M,t) such that $M^{\otimes n}=L$ and $t^n=s$ (after pullback).

Theorem (Geraschenko-Satriano '15)

Every smooth separated tame Deligne–Mumford stack of finite type with trivial generic stabilizer is* a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space and a finite list of numbers corresponding to the orders of cyclic stabilizers at a finite number of stacky points.



Theorem (Geraschenko-Satriano '15)

Every smooth separated tame Deligne–Mumford stack of finite type with trivial generic stabilizer is* a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space and a finite list of numbers corresponding to the orders of cyclic stabilizers at a finite number of stacky points.

What happens with wild stacky curves in char. p?

In trying to classify **wild** stacky curves in char. p, we face the following problems:

- Stabilizer groups need not be cyclic (or even abelian)
- ② Cyclic $\mathbb{Z}/p^n\mathbb{Z}$ -covers of curves occur in families
- Root stacks don't work
 - Finding $M^{\otimes p}$ is a problem
 - $[\mathbb{A}^1/\mathbb{G}_m] \to [\mathbb{A}^1/\mathbb{G}_m], x \mapsto x^p$ is a problem

Key case: cyclic $\mathbb{Z}/p\mathbb{Z}$ stabilizers

Idea: replace **tame** cyclic covers $y^n = f(x)$ with **wild** cyclic covers $y^p - y = f(x)$.

More specifically: **Artin–Schreier theory** classifies cyclic degree p-covers of curves in terms of the **ramification jump** (e.g. if $f(x) = x^m$ then m is the jump).

This suggests introducing wild stacky structure using the local model

$$U = [\operatorname{Spec} A/(\mathbb{Z}/p)]$$

where $A = k[y]/(y^p - y - f(x))$ and \mathbb{Z}/p acts additively.

$$\sqrt[n]{(L,s)/X} \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \qquad \qquad x$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \qquad \qquad x^n$$

$$\sqrt[n]{(L,s)/X} \xrightarrow{} [\mathbb{P}^1/\mathbb{G}_a] \qquad [u,v] \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
X \xrightarrow{} [\mathbb{P}^1/\mathbb{G}_a] \qquad [u^p,v^p-vu^{p-1}]$$

Classification

Artin-Schreier Root Stacks

$$\sqrt[n]{(L,s)/X} \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] \qquad [u,v]
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
X \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] \qquad [u^p,v^p-vu^{p-1}]$$

$$\wp_1^{-1}((L,s,f)/X) \xrightarrow{} [\mathbb{P}^1/\mathbb{G}_a] \qquad [u,v]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{} [L,s,f) \qquad [\mathbb{P}^1/\mathbb{G}_a] \qquad [u^p,v^p-vu^{p-1}]$$

Definition (K.)

Fix $m \geq 1$. Let X be a scheme, $L \to X$ a line bundle and $s: X \to L$ and $f: X \to L^{\otimes m}$ two sections not vanishing simultaneously. The **Artin–Schreier root stack** of X with jump m along (L,s,f) is the normalized pullback

$$\wp_m^{-1}((L,s,f)/X) \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] \qquad [u,v]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{(L,s,f)} [\mathbb{P}(1,m)/\mathbb{G}_a] \qquad [u^p,v^p-vu^{m(p-1)}]$$

where

- $\mathbb{P}(1,m)$ is the weighted projective line with weights (1,m)
- $\mathbb{G}_a = (k, +)$, acting additively
- $[\mathbb{P}(1,m)/\mathbb{G}_a]$ is the classifying stack for triples (L,s,f) up to the principal part of f.

$$\wp_m^{-1}((L,s,f)/X) \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] \qquad [u,v]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{(L,s,f)} [\mathbb{P}(1,m)/\mathbb{G}_a] \qquad [u^p,v^p-vu^{m(p-1)}]$$

Interpretation: $\wp_m^{-1}((L,s,f)/X)$ admits a canonical pth root of L, i.e. a line bundle M such that $M^{\otimes p}=L$, and an AS root of s.

Key example:

Example (K.)

Consider the AS cover

$$Y: y^{p} - y = x^{-m}$$

$$\mathbb{Z}/p \downarrow$$

$$\mathbb{P}^{1} = \operatorname{Proj} k[x_{0}, x_{1}]$$

where k is an algebraically closed field of characteristic p. Then

$$\wp_m^{-1}((\mathcal{O}(1), x_0, x_1^m)/\mathbb{P}^1) \cong [Y/(\mathbb{Z}/p)].$$

In general, every AS root stack is étale-locally isomorphic to such an "elementary AS root stack".

Classification of (Some) Wild Stacky Curves

So let's classify us some wild stacky curves! (Assume: everything defined over $k=\bar{k}$)

Theorem 1 (K. '20)

Every Galois cover of curves $\varphi: Y \to X$ with an inertia group \mathbb{Z}/p factors étale-locally through an Artin–Schreier root stack:

Informal consequence: there are infinitely many non-isomorphic stacky curves over \mathbb{P}^1 with a single stacky point of order p.

This phenomenon only occurs in char. p.

Classification of (Some) Wild Stacky Curves

Main result:

Theorem 2 (K. '20)

Every stacky curve $\mathcal X$ with a stacky point of order p is étale-locally isomorphic to an Artin–Schreier root stack $\wp_m^{-1}((L,s,f)/U)$ over an open subscheme U of the coarse space of $\mathcal X$.

This can even be done globally if \mathcal{X} has coarse space \mathbb{P}^1 :

Theorem 3 (K. '20)

If $\mathcal X$ has coarse space $\mathbb P^1$ and all stacky points of $\mathcal X$ have order p, then $\mathcal X$ is isomorphic to a fibre product of AS root stacks of the form $\wp_m^{-1}((L,s,f)/\mathbb P^1)$ for (m,p)=1 and (L,s,f).

Generalizations

What about \mathbb{Z}/p^2 -covers, stacky points of order p^2 , and beyond?

For cyclic stabilizer groups \mathbb{Z}/p^n , Artin–Schreier theory is subsumed by **Artin–Schreier–Witt theory**:

- AS equations $y^p y = f(x)$ are replaced by Witt vector equations $\underline{\mathbf{y}}^p \underline{\mathbf{y}} = \underline{\mathbf{f}}(\underline{\mathbf{x}}) = (f_0(\underline{\mathbf{x}}), \dots, f_n(\underline{\mathbf{x}})).$
- Covers are characterized by sequences of ramification jumps.
- Local structure is $U = [\operatorname{Spec} A/(\mathbb{Z}/p^n)]$ where

$$A = K[\mathbf{y}]/(\mathbf{y}^p - \mathbf{y} - \mathbf{\underline{f}})$$

where $\underline{\mathbf{f}} = (f_0, \dots, f_{n-1})$ is a Witt vector over \overline{K} .

This local structure can be formally introduced using **Artin–Schreier–Witt root stacks** (work in progress).

Generalizations

Thank you!