Group members:

Warm-up: on your own, write down the three most challenging concepts you have learned since the first midterm. Then, as a group, share some strategies for those types of problems.

As a class: what are the important definitions, formulas, theorems, concepts, techniques, etc. that you should know for this exam?

Problem 1. (CW 4.5, Problem 5) For the function $g(x, y)=\sqrt{41-4 x^{2}-y^{2}}$, approximate $g(2.1,2.9)$ using the point $\left(x_{0}, y_{0}\right)=(2,3)$. How much error is involved in your approximation?

Problem 2. (CW 4.1 \& 4.2, Problem 4) Draw the level curves $f(x, y)=k$ where $f(x, y)=$ $\left(\frac{1}{2} y+x\right)^{3}$ and $k=-1,0,1,8$.

Problem 3. Compute all first-order partial derivatives of the function $f(x, y)=x \sqrt{x y-3}$.

Problem 4. Compute all first-order partial derivatives of the function $g(x, y)=\sin \left(\frac{1}{x+y}\right)$.

Problem 5. Compute all first-order partial derivatives of the function $h(x, y)=x y^{2} e^{x+1}$.

Problem 6. What is the 12 th order mixed partial derivative $f_{x x y y x y y y x x x y}$ for the function $f(x, y)=\sin x \cos y$?

Problem 7. (CW 4.3, Problem 4) Find a real number A that makes the function

$$
f(x, y)= \begin{cases}\frac{x^{2}-2 x y}{x^{2}-4 y^{2}}, & x \neq \pm 2 y \\ A, & (x, y)=(2,1)\end{cases}
$$

continuous at $(x, y)=(2,1)$.

Problem 8. Compute the Taylor series of $\frac{e^{-x^{2}}}{x}$ centered about $x=0$. What is the interval of convergence?

Problem 9. Express the definite integral

$$
F(x)=\int_{0}^{x} \frac{t^{2}}{1-t^{2}} d t
$$

as a Maclaurin series, using the Maclaurin series of $f(x)=\frac{x^{2}}{1-x^{2}}$. What is its interval convergence? Then use the fourth degree Taylor polynomial of $f(x)$ at $x=0$ to approximate the integral

$$
F\left(\frac{1}{2}\right)=\int_{0}^{1 / 2} \frac{t^{2}}{1-t^{2}} d t
$$

Problem 10. Compute the radius of convergence and the interval of convergence for each of the power series.
(a) $\sum_{n=1}^{\infty}\left(n^{3}+n^{2}-1\right) x^{n}$
(b) $\sum_{n=1}^{\infty} n!x^{n}$
(c) $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{9^{n}}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{7^{n-1}}$
(f) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-4)^{n}}{(n+1) 5^{n}}$

Problem 11. Consider the infinite series $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}}$.
(a) Use an appropriate series test to show that the series converges.
(b) Using part (a), can you decide the value of $\lim _{n \rightarrow \infty} \frac{\cos ^{2} n}{n^{2}}$? Explain.

Problem 12. (CW 3.3, Problem 9) For which value of c does $\sum_{n=0}^{\infty} e^{c n}=10$?

