Problem 1. Find the minimal polynomial of $\alpha=\sqrt{2}+\sqrt[2]{3}$ over \mathbb{Q}.

Problem 2. Decide whether each polynomial is irreducible. If it's reducible, find its irreducible factors.
(a) $x^{7}+11 x^{3}-33 x+22$ over \mathbb{Q}
(b) $x^{7}+11 x^{3}-33 x+22$ over \mathbb{F}_{11}
(c) $x^{3}+7 x+7^{2022}+2$ over \mathbb{Q}
(d) $x^{4}+4$ over \mathbb{F}_{5}

Problem 3. Prove that every ring homomorphism $\varphi: \mathbb{Q} \rightarrow \mathbb{Q}$ is the identity.

Problem 4. Let $I=(f, g)$ be the ideal in $\mathbb{Q}[x]$ generated by $f(x)=x^{4}-x^{3}+x-1$ and $g(x)=x^{4}+x^{2}+1$.
(a) Is I principal? Why or why not?
(b) If I is principal, find an $h(x) \in \mathbb{Q}[x]$ such that $I=(h)$.

Problem 5. Let A and B be rings. Prove that $(A \times B)^{\times} \cong A^{\times} \times B^{\times}$as groups.

Problem 6. Which of the following complex numbers can be constructed using a ruler and compass in the complex plane? If possible, show how to construct the constructible ones.
(a) $\sqrt{2}$
(b) $\sqrt{2}+\sqrt{3}$
(c) $\sqrt[5]{5}$
(d) $2+\sqrt{i}$
(e) $\cos \left(\frac{\pi}{16}\right)-i \sin \left(\frac{\pi}{16}\right)$

