Categorifying zeta and *L*-functions

Andrew J. Kobin

ajkobin@emory.edu

PANTS

December 11, 2022

Joint work with Jon Aycock

Objective Linear Algebra

Introduction

This talk is based on

A Primer on Zeta Functions and Decomposition Spaces

Andrew Kobin

Many examples of zeta functions in number theory and combinatorics are special cases of a construction in homotopy theory known as a decomposition space. This article aims to introduce number theorists to the relevant concepts in homotopy theory and lays some foundations for future applications of decomposition spaces in the theory of zeta functions.

Comments: 23 pages: minor changes and additional references added Subjects: Number Theory (math.NT); Algebraic Geometry (math.AG); Calegory Theory (math.AT); AlgC classes: 110/6, 1118/8, 14100, 16150, 14710, 6411, 55799 Cite as: adViv-2011.139302; cmath.NT] (or adV/2011.139302; cmath.NT)

and

Categorifying quadratic zeta functions

Jon Aycock, Andrew Kobin

The Dedekind zeta function of a quadratic number field factors as a product of the Riemann zeta function and the L-function of a quadratic Dirichlet character. We categorify this formula using objective linear algebra in the abstract incidence algebra of the division poset.

 Comments:
 27 pages

 Subjects:
 Number Theory (math.NT)

 MSC classes:
 11M06, 11M41, 18N50, 06A11, 16T10

 Cite as:
 arXiv:2205.06288 [math.NT] (or arXiv:2205.062894 [math.NT] for this version)

and generalizations to L-functions (work in progress with J. Aycock)

Introduction	
0000000	

Objective Linear Algebra

Applications 0000

Introduction

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?

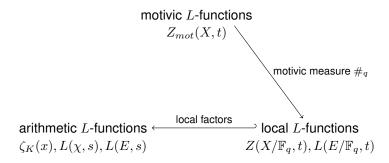
motivic *L*-functions $Z_{mot}(X, t)$

arithmetic *L*-functions $\zeta_{\mathbb{Q}}(x), \zeta_K(s), L(E, s)$

local L-functions $Z(X/\mathbb{F}_q,t), L(E/\mathbb{F}_q,t)$

Introduction	Incidence Algebras	Objective Linear Algebra	Applications
Introduction			

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?



Introduction
00000000

Objective Linear Algebra

Applications

Deep Fried Version

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?

Introduction
00000000

Objective Linear Algebra

Applications

Deep Fried Version

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?

Introduction

Incidence Algebras

Objective Linear Algebra

Applications

Zeta Functions of Number Fields

Let K/\mathbb{Q} be a number field. Its zeta function is the Dirichlet series

$$\zeta_K(s) = \sum_{\mathfrak{a} \in I_K^+} \frac{1}{N(\mathfrak{a})^s}$$

Has the Riemann Hypothesis been solved?

GPT-3 almost did it though...

Zeta Functions of Number Fields

We can formalize certain properties of $\zeta_K(s)$ in an algebra of "arithmetic functions".

Let I_K^+ be the set of ideals of \mathcal{O}_K , ordered by reverse inclusion $\mathfrak{a} \leq \mathfrak{b} \iff \mathfrak{b} \subseteq \mathfrak{a}$.

Let $A_K = \{f : I_K^+ \to \mathbb{C}\}$ be the algebra of arithmetic functions with

$$(f\ast g)(\mathfrak{a})=\sum_{\mathfrak{d}\leq\mathfrak{a}}f(\mathfrak{d})g(\mathfrak{a}\mathfrak{d}^{-1}).$$

We call the distinguished element $\zeta : \mathfrak{a} \mapsto 1$ the zeta function of I_K^+ .

Introduction
0000000

Objective Linear Algebra

Applications

Zeta Functions of Number Fields

Let $A_K = \{f: I_K^+ \to \mathbb{C}\}$ be the algebra of arithmetic functions with

$$(f\ast g)(\mathfrak{a})=\sum_{\mathfrak{d}\leq\mathfrak{a}}f(\mathfrak{d})g(\mathfrak{a}\mathfrak{d}^{-1}).$$

The norm map $N: I_K^+ \to I_{\mathbb{Q}}^+ \cong \mathbb{N}$ determines an algebra map

$$A_{K} \longrightarrow A_{\mathbb{Q}} \cong DS(\mathbb{C})$$
$$f \leftrightarrow \sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}$$
$$f \longmapsto \left(N_{*}f : n \mapsto \sum_{N(\mathfrak{a})=n} f(\mathfrak{a}) \right)$$
$$\zeta \longmapsto N_{*}(\zeta) \leftrightarrow \zeta_{K}(s)$$

Objective Linear Algebra

Applications

What's really going on?

What's really going on?

These A_K are examples of **reduced incidence algebras**, which come from a much more general simplicial framework.

Idea (due to Gálvez-Carrillo, Kock and Tonks): zeta functions don't just come from posets, but from higher homotopy structure.

In this talk: zeta functions come from decomposition sets.

In general: zeta functions come from decomposition spaces.

Objective Linear Algebra

Applications 0000

Decomposition Sets

Recall: a simplicial set is a functor $S: \Delta^{op} \to Set$

$$S_0 \rightleftharpoons S_1 \rightleftharpoons S_2 \cdots$$

Example

Any category C determines a simplicial set NC with:

- 0-simplices = objects x in C
- 1-simplices = morphisms $x \xrightarrow{f} y$ in \mathcal{C}
- 2-simplices = decompositions $x \xrightarrow{h} y = x \xrightarrow{f} z \xrightarrow{g} y$
- etc.

Objective Linear Algebra

Decomposition Sets

Recall: a simplicial set is a functor $S: \Delta^{op} \to Set$

i

$$S_0 \rightleftharpoons S_1 \rightleftharpoons S_2 \cdots$$

Example

 I_K^+ determines a category with:

- 0-simplices = objects \mathfrak{a} in I_K^+
- 1-simplices = relations $\mathfrak{b} \leq \mathfrak{a}$
- 2-simplices = decompositions $\mathfrak{b} \leq \mathfrak{c} \leq \mathfrak{a}$

etc.

Introduction

Objective Linear Algebra

Applications

Decomposition Sets

A certain type of simplicial set called a **decomposition set** defined by Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

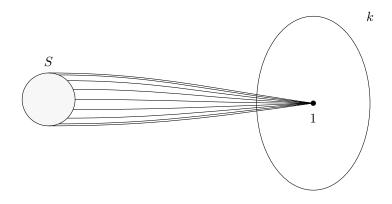
Here, "arithmetic functions" on the 1-simplices $f:S_1 \to k$ are multiplied by

$$(f * g)(x) = \sum_{\substack{\sigma \in S_2\\d_1\sigma = x}} f(d_2\sigma)g(d_0\sigma).$$

Introduction	Incidence Algebras	Objective Linear Algebra	Applications
00000000	000000	0000000	0000

For a decomposition set S, let I(S) be the algebra of "arithmetic functions" $I(S) = \text{Hom}(k^{S_1}, k)$.

In I(S), there is a distinguished element called the **zeta function** $\zeta : x \mapsto 1$.



Introduction
00000000

Objective Linear Algebra

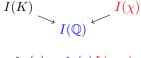
Applications

Is everything zeta? 「_(`ソ)_/「

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?

Goal: connect different zeta and *L*-functions together using simplicial maps between their native incidence algebras

e.g. for K/\mathbb{Q} quadratic (Aycock–K., 2022):



 $\zeta_K(s) = \zeta_{\mathbb{Q}}(s)L(\chi,s)$

Introduction
00000000

Objective Linear Algebra

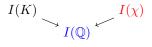
Applications

Is everything zeta? 「_(`ソ)_/「

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?

Goal: connect different zeta and *L*-functions together using simplicial maps between their native incidence algebras

e.g. for K/\mathbb{Q} quadratic (Aycock–K., 2022):



 $\zeta_K(s) = \zeta_{\mathbb{Q}}(s)L(\chi,s)$

To bring *L*-functions into the mix, need objective linear algebra.

Introduction 00000000 Incidence Algebras

Objective Linear Algebra

Applications

Objective Linear Algebra

The construction of I(S) can be generalized further using the formalism of **objective linear algebra** ("linear algebra with sets"):

Numerical	Objective
basis B	set B
vector v	set map $v: X \to B$
	M
matrix M	span span
	B C
vector space V	slice category $\operatorname{Set}_{/B}$
linear map with matrix M	linear functor $t_!s^*: \operatorname{Set}_{/B} \to \operatorname{Set}_{/C}$
tensor product $V \otimes W$	$\operatorname{Set}_{/B} \otimes \operatorname{Set}_{/C} \cong \operatorname{Set}_{/B \times C}$

Introduction 00000000 Incidence Algebras

Objective Linear Algebra

Applications

Objective Linear Algebra

The construction of I(S) can be generalized further using the formalism of **objective linear algebra** ("linear algebra with sets"):

Numerical	Objective
basis B	set B
vector v	set map $v: X \to B$
	M
matrix M	span span
vector space V	slice category $\operatorname{Set}_{/B}$
linear map with matrix M	linear functor $t_!s^*: \operatorname{Set}_{/B} \to \operatorname{Set}_{/C}$
tensor product $V \otimes W$	$\operatorname{Set}_{/B} \otimes \operatorname{Set}_{/C} \cong \operatorname{Set}_{/B \times C}$

To recover vector spaces, take $V = k^B$ and take cardinalities.

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Numerical	Objective	
basis B	set B	
vector space V	slice category $\operatorname{Set}_{/B}$	
basis S_1	S_1 set S_1	

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Numerical	Objective	
basis B	set B	
vector space V slice category Se		
basis S_1	set S_1	
$k^{S_1} =$ free vector space on S_1	slice category $\operatorname{Set}_{/S_1}$	

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Numerical	Objective	
basis B	set B	
vector space V slice category Set		
basis S_1 set S_1		
$k^{S_1} =$ free vector space on S_1 slice category S		
$I(S) = \operatorname{Hom}(k^{S_1}, k)$	$I(S) := \operatorname{Lin}(\operatorname{Set}_{S_1}, \operatorname{Set})$	

Objective Linear Algebra

Applications

Abstract Incidence Algebras

How do we construct I(S) as an "objective vector space"?

Numerical	rical Objective	
basis B set B		
vector space V	slice category $\operatorname{Set}_{/B}$	
basis S_1	set S_1	
$k^{S_1} =$ free vector space on S_1	slice category $\operatorname{Set}_{/S_1}$	
$I(S) = \operatorname{Hom}(k^{S_1}, k) \qquad \qquad I(S) := \operatorname{Lin}(\operatorname{Set}_{/S_1}, S)$		

So an element $f \in I(S)$ is a linear functor $f = t_! s^* : Set_{/S_1} \to Set$ represented by a span

$$f = \begin{pmatrix} M \\ \swarrow & \downarrow \\ S_1 & \ast \end{pmatrix}$$

Introduction
00000000

Objective Linear Algebra

Applications

Abstract Incidence Algebras

So an element $f \in I(S)$ is a linear functor $f = t_! s^* : Set_{/S_1} \to Set$ represented by a span

$$f = \begin{pmatrix} M \\ s & t \\ S_1 & * \end{pmatrix}$$

Example

The zeta functor is the element $\zeta \in I(S)$ represented by

$$\zeta = \begin{pmatrix} S_1 \\ id \\ S_1 \\ & * \end{pmatrix}$$

Objective Linear Algebra

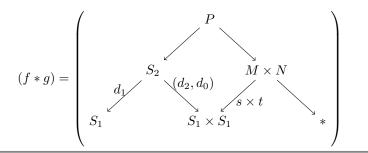
Abstract Incidence Algebras

Example

For two elements $f, g \in I(S)$ represented by



the convolution $f * g \in I(S)$ is represented by



Introduction
00000000

Objective Linear Algebra

Applications

Quadratic Number Fields

For a quadratic extension K/\mathbb{Q} ,

 $\zeta_K(s) = \zeta_{\mathbb{Q}}(s) L(\chi, s)$

where χ is the quadratic character cutting out K/\mathbb{Q} .

Theorem (Aycock–K., '22)

In the reduced incidence algebra $\widetilde{I}(\mathbb{Q}) := \widetilde{I}(\mathbb{N}, |)$, there is an equivalence of linear functors

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * L(\chi)^- \cong \zeta_{\mathbb{Q}} * L(\chi)^+$$

where $N: I_K^+ \to \mathbb{N}$ is the norm map and $L(\chi)^+$ and $L(\chi)^-$ are functors in $\widetilde{I}(\mathbb{N})$.

Taking cardinalities, the formula reads

 $N_*\zeta_K = \zeta_{\mathbb{Q}} * (L(\chi)^+ - L(\chi)^-) = \zeta_{\mathbb{Q}} * L(\chi).$

Introduction 00000000	Incidence Algebras	Objective Linear Algebra	Applications

Elliptic Curves

Analogously, for an elliptic curve E/\mathbb{F}_q , the zeta function Z(E,t) can be written

$$Z(E,t) = \frac{1 - a_q t + q t^2}{(1 - t)(1 - qt)} = Z(\mathbb{P}^1, t) L(E, t).$$

Theorem (Aycock–K., '22+ ϵ)

In the reduced incidence algebra $\widetilde{I}(E):=\widetilde{I}(Z_0^{\rm eff}(E)),$ there is an equivalence of linear functors

$$\pi_*\zeta_E + \zeta_{\mathbb{P}^1} * L(E)^- \cong \zeta_{\mathbb{P}^1} * L(E)^+$$

where $\pi : E \to \mathbb{P}^1$ is a fixed double cover and $L(E)^+$ and $L(E)^-$ are functors in $\widetilde{I}(\mathbb{P}^1)$.

Pushing forward to $\widetilde{I}(\operatorname{Spec} \mathbb{F}_q)$ and taking cardinalities, it reads

 $\pi_*\zeta_E = \pi_*\zeta_{\mathbb{P}^1} * (L(E)^+ - L(E)^-) = \pi_*\zeta_{\mathbb{P}^1} * L(E).$

Objective Linear Algebra

Applications

Highlights and Dreams for the Future

Advantages of the objective approach:

- Intrinsic: zeta is built into the object S directly
- $\bullet\,$ Functorial: to compare zeta functions, find the right map $S \to T$
- Structural: proofs are categorical, avoiding choosing elements (e.g. computing local factors of zeta functions explicitly is difficult)
- It's pretty fun to prove things!

Future work:

- Motivic zeta functions $Z_{mot}(X, t)$
- Construct $\zeta_{\mathcal{X}}$ for an algebraic stack \mathcal{X}
- Lift *L*-functions *L(V)* of Galois representations
- Archimedean zeta functions

Thank you!