
Stacky Curves and Generalized Fermat
Equations

Andrew J. Kobin

ajkobin@emory.edu

PANTS @ UGA

December 9, 2023



Generalized Fermat Equations Stacky Curves Applications

Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.
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Generalized Fermat Equations

Motivation: Find all integer solutions (x, y, z) to the generalized
Fermat equation

Axp +Byq = Czr

for A,B,C ∈ Z and p, q, r ≥ 2.
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Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Byq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to x2 + y2 = z2,
with primitive (gcd(x, y, z) = 1) solutions parametrized by

(x, y, z) =

(
s2 − t2

2
, st,

s2 + t2

2

)
for odd, coprime s > t ≥ 1.
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Example ((A,B,C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to x2 + y2 = z2,
with primitive (gcd(x, y, z) = 1) solutions parametrized by
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2
, st,
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for odd, coprime s > t ≥ 1.

(
s2−t2

s2+t2 ,
2st

s2+t2

)
slope = t

s
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Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Byq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are no integer solutions to xn + yn = zn for
n > 2.

Assume n is prime. If (x0, y0, z0) were such a solution, it would
determine an elliptic curve

E : y2 = x(x− xn0 )(x+ yn0 )

Ribet showed E is not modular. However, Wiles showed all such
elliptic curves are modular, a contradiction.
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Generalized Fermat Equations

Takeaway: Integer solutions to Axp +Byq = Czr can be studied
using geometry.
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Generalized Fermat Equations

Here are some more known cases of Axp +Byq = Czr.
(Beukers, Darmon–Granville) Let χ = 1

p + 1
q + 1

r − 1. The
equation xp + yq = zr has infinitely many primitive solutions
when χ > 0 and finitely many when χ < 0.

(Mordell, Zagier, Edwards) When χ > 0, the primitive solutions to
xp + yq = zr may always be parametrized explicitly (as in the
(2, 2, 2) case).

(Fermat, Euler, et al.) The case χ = 0 only occurs for
(2, 3, 6), (4, 4, 2), (3, 3, 3) and permutations of these. In each case,
descent proves there are finitely many primitive solutions.

(2, 3, 7) was solved by Poonen–Schaeffer–Stoll (2007).

(2, 3, 8), (2, 3, 9) were solved by Bruin (1999, 2004).

etc.
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Generalized Fermat Equations

Question: How do we count solutions to such equations?

One strategy is to form the surface of (primitive, nontrivial) solutions
in 3-dimensional space over Z:

S = {(x, y, z) ∈ Z3 | Axp +Byq = Czr, nontrivial, primitive} ⊆ A3
Z.
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Generalized Fermat Equations

S = {(x, y, z) ∈ Z3 | Axp +Byq = Czr, nontrivial, primitive}

Let G be the group of symmetries of S. (G = Gm · (µp × µq × µr))

We can form the curve X = S/G whose points are exactly the
equivalence classes of solutions:

X(Z) = {x, y, z ∈ Z | Axp +Byq = Czr, nontriv., prim.}/ ∼
where g · (x, y, z) ∼ (x, y, z).

Upside: these are easier to count than S(Z).
Downside: the geometry of X is bad!
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Generalized Fermat Equations

S = {(x, y, z) ∈ Z3 | Axp +Byq = Czr, nontrivial, primitive}

Let G be the group of symmetries of S. (G = Gm · (µp × µq × µr))

We can form the stacky curve X = [S/G] whose points remember
the symmetries of each solution:

X (Z) : objects: nontriv., prim. solutions to Axp +Byq = Czr

morphisms: (x, y, z) g−→ g · (x, y, z).

Upside: these are easier to count than S(Z).
Downside: none - stacks are awesome!
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Stacky Curves

Here’s an informal definition of a stacky curve:

A stacky curve X consists of an ordinary curve X, together with a
finite number of marked points P1, . . . , Pn, each of which is decorated
with a number ei = order of the group of symmetries of Pi.

X
e1 e2 e3 · · · en
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Stacky Curves

Here’s a cartoon of our stacky curve [S/G], where S = primitive
integer solutions to Axp +Byq = Czr:

p q r



Generalized Fermat Equations Stacky Curves Applications

Generalized Fermat Equations, Revisited

To solve Axp +Byq = Czr, exploit the geometry of X = [S/G].

Example (Poonen–Schaeffer–Stoll (‘07))

For X : x2 + y3 = z7, there is an étale map

X

CC1 C2 · · · C10
twist twist

where C is the Klein quartic, defined by x3y+ y3 + x = 0. Descending
points from C and its 10 twists gives 16 primitive solutions:

(±1,−1, 0), (±1, 0, 1), (0,±1,±1), (±3,−2, 1),
(±71,−17, 2), (±2213459, 1414, 65), (±15312283, 9262, 113),
(±21063928,−76271, 17).
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Local-Global Principle for Curves

For a curve X, the local-global principle says that:

X having Q-points is equivalent to X having Qp-points for all p.

Let g = g(X) be the genus of X. It is known that:
(Hasse–Minkowski) If g = 0, the LGP holds for X.

There are counterexamples to the LGP for all g > 0.
For example, X : 2y2 = 1− 17x4.
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Local-Global Principle for Stacky Curves

For a stacky curve X , the local-global principle says that:

X having Z-points is equivalent to X having Zp-points for all p.

This time, the genus g = g(X ) can be rational:

g(X ) = g(X) +
1

2

n∑
i=1

ei − 1

ei
.
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Local-Global Principle for Stacky Curves

For a stacky curve X , the local-global principle says that:

X having Z-points is equivalent to X having Zp-points for all p.

This time, the genus g = g(X ) can be rational:

g(X ) = g(X) +
1

2

n∑
i=1

ei − 1

ei
.

Example

2 3 7

For example, the (2, 3, 7) curve has genus g = 85
84 .
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Local-Global Principle for Stacky Curves

For a stacky curve X , the local-global principle says that:

X having Z-points is equivalent to X having Zp-points for all p.

Theorem (Bhargava–Poonen (‘20))
1 If g < 1

2 , the LGP holds.
2 There are counterexamples to the LGP when g = 1

2 .

Theorem (Darmon–Granville (‘95))

When g = n−1
n , there are counterexamples to the LGP coming from

the generalized Fermat equation with exponents (2, 2, n).

Joint work with Duque-Rosero, Keyes, Roy, Sankar, Wang (in
progress): a complete solution in the (2, 2, n) case.
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Another Example of a Stacky Curve

Here’s another important stacky curve:

4 6
X (1)

Fact: X (1) ∼=M1,1, the compactified moduli stack of elliptic curves.
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Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the
space of mod p modular forms as sections of line bundles on the
stacky curve X (1) and other modular curves over Fp.

For p > 3, the story for X (1) is the same as before:

4 6
X (1)

and
⊕
Mk
∼= Fp[x4, x6] (originally due to Edixhoven).

However, over F2 and F3, the stacky structure of X (1) looks different:

G

nonabelian!
X (1)

Theorem (Deligne (‘72), K.–Zureick-Brown (‘23+ε))

For p = 2, 3, the ring of modular forms mod p is Fp[x2, x12].
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Thank you!

Questions?
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