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Based on

work in progress with B. Krstic and an upcoming preprint, tentatively
titled “Categorifying quadratic zeta functions”, with J. Aycock.
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Mysterious setup question: you probably know the definition of the
zeta function

ζQ(s) =

∞∑
n=1

1

ns

(and you may know some examples of other zeta functions), but what
is a zeta function?
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The Riemann Zeta Function

The Riemann zeta function is a meromorphic function ζQ(s) on the
complex plane defined for Re(s) > 1 by

ζQ(s) =

∞∑
n=1

1

ns
.

More generally, a Dirichlet series is a complex function

F (s) =

∞∑
n=1

f(n)

ns
.

We will focus on the formal properties of Dirichlet series.

The coefficients f(n) assemble into an arithmetic function
f : N→ C. (Think: F is a generating function for f .)

Then ζQ(s) is the Dirichlet series for ζ : n 7→ 1.
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Arithmetic Functions

The space of arithmetic functions A = {f : N→ C} form an algebra
under convolution:

(f ∗ g)(n) =
∑
d|n

f(d)g
(
n
d

)
.

This identifies the algebra of formal Dirichlet series with A:

A←→ DS(Q)

f 7−→ F (s) =

∞∑
n=1

f(n)

ns

f ∗ g 7−→ F (s)G(s)

ζ 7−→ ζQ(s)
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Number Fields

For a number field K/Q, there is a zeta function ζK(s) defined for
Re(s) > 1 by

ζK(s) =
∑
a∈I+K

1

N(a)s
=

∞∑
n=1

#{a | N(a) = n}
ns

where I+
K = {ideals in OK} and N = NK/Q.
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∑
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K = {ideals in OK} and N = NK/Q.

Why it’s a zeta function: ζ : a 7→ 1
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Number Fields

As with ζQ(s), we can formalize certain properties of ζK(s) in the
algebra of arithmetic functions AK = {f : I+

K → C} with

(f ∗ g)(a) =
∑
b|a

f(b)g(ab−1).

This admits a map to DS(Q):

N∗ : AK −→ A ∼= DS(Q)

f 7−→

N∗f : n 7→
∑

N(a)=n

f(a)


ζ 7−→ N∗ζ ↔ ζK(s)



Introduction Zeta Functions Incidence Algebras Decomposition Spaces

Varieties over Finite Fields

There’s a similar story when X is an algebraic variety over Fq, with
point-counting zeta function

Z(X, t) = exp

[ ∞∑
n=1

#X(Fqn)

n
tn

]
Why it’s a zeta function: Z(X, t) =

∑
α∈Zeff

0 (X)

1tdeg(α) where Zeff
0 (X) =

effective 0-cycles on X. So ζ : α 7→ 1.

There’s an algebra AX of functions on Zeff
0 which maps to the algebra

of formal power series:

AX −→ ASpec Fq
∼= C[[t]]

f ↔
∞∑
n=0

f(n)tn

f 7−→ “ deg∗(f)”
ζ 7−→ “ deg∗(ζ)”↔ Z(X, t)
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What’s really going on?

A,AK and AX are examples of the (reduced) incidence algebra of
a poset.
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Incidence Algebra of a Poset

Let (P,≤) be a poset and define [x, y] = {z ∈ P | x ≤ z ≤ y}. Call P
locally finite if every interval is finite.

Definition
The incidence coalgebra of a locally finite poset P is the free
k-vector space C(P) on the set of intervals in P, with comultiplication

[x, y] 7−→
∑

z∈[x,y]

[x, z]⊗ [z, y].

The incidence algebra of P is the dual I(P) = Hom(C(P), k) with
multiplication

f ⊗ g 7−→ (f ∗ g)([x, y]) =
∑

z∈[x,y]

f([x, z])g([z, y]).

Think: elements in I(P) are like arithmetic functions on the intervals
in P.
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Incidence Algebras

Idea (due to Gálvez-Carrillo, Kock and Tonks): zeta functions don’t
just come from posets, but from higher homotopy structure.

In this talk: zeta functions come from decomposition sets.

In general: zeta functions come from decomposition spaces.
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Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

A poset P determines a simplicial set NP with:
0-simplices = elements x ∈ P
1-simplices = intervals [x, y]

2-simplices = decompositions [x, y] = [x, z] ∪ [z, y]

etc.
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Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

More generally, any category C determines a simplicial set NC with:
0-simplices = objects x in C

1-simplices = morphisms x f−→ y in C

2-simplices = decompositions x h−→ y = x
f−→ z

g−→ y

etc.
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Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition
The incidence coalgebra of a decomposition set S is the free
k-vector space C(S) =

⊕
x∈S1

kx with comultiplication

C(S) −→ C(S)⊗ C(S)

x 7−→
∑
σ∈S2
d1σ=x

d2σ ⊗ d0σ.

σd2σ d0σ

d1σ
0

1

2
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Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition
The incidence algebra of a decomposition set S is the dual vector
space I(S) = Hom(C(S), k) with multiplication

I(S)⊗ I(S) −→ I(S)

f ⊗ g 7−→ (f ∗ g)(x) =
∑
σ∈S2
d1σ=x

f(d2σ)g(d0σ).

σd2σ d0σ

d1σ
0

1

2
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Numerical Incidence Algebras

In I(S) = Hom(C(S), k), there is a distinguished element called the
zeta function ζ : x 7→ 1.

Key takeaways:
(1) A zeta function is ζ ∈ I(S) for some decomposition set S.
(2) Familiar zeta functions like ζK(s) and Z(X, t) are constructed

from some ζ ∈ Ĩ(S) by pushing forward to another reduced∗

incidence algebra which can be interpreted in terms of
generating functions:

e.g. Ĩ(N, |) ∼= DS(Q), e.g. Ĩ(N0,≤) ∼= k[[t]].

(3) Some properties of zeta functions can be proven in the incidence
algebra directly:

e.g. ζQ(s) =
∏
p

1

1− p−s
←→ Ĩ(N, |) ∼=

⊗
p

Ĩ({pk}, |).
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Quadratic Zeta Functions

For a quadratic number field K/Q, the zeta function ζK(s) satisfies

ζK(s) = ζQ(s)L(χ, s)

where L(χ, s) is the L-function attached to the Dirichlet character
χ =

(
D
·
)
, where D = disc. of K.

Theorem (Aycock–K.)

In I(N, |), there is an equivalence of functors

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

where N : (I+
K , |)→ (N, |) is the norm and χ+, χ− ∈ I(N, |).

In AQ ∼= DS(Q), this becomes

N∗ζK = ζQ ∗ (χ+ − χ−) = ζQ ∗ χ.
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Objective Linear Algebra

The construction of I(S) can be generalized further using the
formalism of objective linear algebra (“linear algebra in a category”):

Numerical Objective
basis B object B

vector v morphism v : X → B

matrix M span
B C

M
s t

vector space V slice category S/B
linear map with matrix M linear functor t!s∗ : S/B → S/C

tensor product V ⊗W S/B ⊗ S/C ∼= S/B×C
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Abstract Incidence Algebras

How do we construct I(S) as an “objective vector space”? Now, S
can be any simplicial object in S.

C(S) = slice category S/S1
I(S) = Fun(S/S1

,S).

So an element f ∈ I(S) is a linear functor f = t!s
∗ : S/S1

→ S
represented by a span

f =


S1 ∗

M
s t


The zeta functor is the element ζ ∈ I(S) represented by

ζ =


S1 ∗

S1

id





Introduction Zeta Functions Incidence Algebras Decomposition Spaces

Motivic Zeta Function

Goal (joint with B. Krstic): lift the motivic zeta function of a k-variety

Zmot(X, t) =

∞∑
n=0

[SymnX]tn

to ζ ∈ I(S) for some decomposition space S.

More ambitious goal: represent motivic measures as maps between
abstract incidence algebras, e.g.

I(S)

ASpec Fq
3 Z(X, t)

I(∗) 3 (1− t)−χtop(X)

Z[p±, q±] 3 Hodge poly.

Z[SB]

#Fq

χtop

hp,q

µLL
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Thank you!
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