Arithmetic Geometry and Stacky Curves

Andrew J. Kobin

ajkobin@emory.edu
Penn Algebra Seminar
March 22, 2024

Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.

Motivation: Find all integer solutions (x, y, z) to the generalized Fermat equation

$$
A x^{p}+B y^{q}=C z^{r}
$$

for $A, B, C \in \mathbb{Z}$ and $p, q, r \geq 2$.

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B y^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(2,2,2))$

Famously, there are infinitely many integer solutions to $x^{2}+y^{2}=z^{2}$, with primitive $(\operatorname{gcd}(x, y, z)=1)$ solutions parametrized by

$$
(x, y, z)=\left(\frac{s^{2}-t^{2}}{2}, s t, \frac{s^{2}+t^{2}}{2}\right) \quad \text { for odd, coprime } s>t \geq 1
$$

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B y^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(n, n, n))$

Also famously, there are no integer solutions to $x^{n}+y^{n}=z^{n}$ for $n>2$.

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B y^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(n, n, n))$

Also famously, there are no integer solutions to $x^{n}+y^{n}=z^{n}$ for $n>2$. Assume n is prime. If $\left(x_{0}, y_{0}, z_{0}\right)$ were such a solution, it would determine an elliptic curve

Ribet showed E is not modular. However, Wiles showed all such elliptic curves are modular, a contradiction.

Generalized Fermat Equations

Takeaway: Integer solutions to $A x^{p}+B y^{q}=C z^{r}$ can be studied using geometry.

Generalized Fermat Equations

Here are some more known cases of $A x^{p}+B y^{q}=C z^{r}$.

- (Beukers, Darmon-Granville) Let $\chi=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1$. The equation $x^{p}+y^{q}=z^{r}$ has infinitely many primitive solutions when $\chi>0$ and finitely many when $\chi<0$.

Generalized Fermat Equations

Here are some more known cases of $A x^{p}+B y^{q}=C z^{r}$.

- (Beukers, Darmon-Granville) Let $\chi=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1$. The equation $x^{p}+y^{q}=z^{r}$ has infinitely many primitive solutions when $\chi>0$ and finitely many when $\chi<0$.
- (Mordell, Zagier, Edwards) When $\chi>0$, the primitive solutions to $x^{p}+y^{q}=z^{r}$ may always be parametrized explicitly (as in the $(2,2,2)$ case).
- (Fermat, Euler, et al.) The case $\chi=0$ only occurs for $(2,3,6),(4,4,2),(3,3,3)$ and permutations of these. In each case, descent proves there are finitely many primitive solutions.
- $(2,3,7)$ was solved by Poonen-Schaeffer-Stoll (2007).
- $(2,3,8),(2,3,9)$ were solved by Bruin $(1999,2004)$.
- etc.

Generalized Fermat Equations

Question: How do we count solutions to such equations?

Generalized Fermat Equations

Question: How do we count solutions to such equations?
One strategy is to form the surface of (primitive, nontrivial) solutions in 3-dimensional space over \mathbb{Z} :

$$
S=\operatorname{Spec}\left(\mathbb{Z}[x, y, z] /\left(A x^{p}+B y^{q}-C z^{r}\right)\right) \backslash\{x=y=z=0\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3} .
$$

For any ring R, this keeps track of the R-solutions:

$$
S(R)=\left\{x, y, z \in R \mid A x^{p}+B y^{q}=C z^{r}, \text { nontrivial, primitive }\right\} .
$$

Generalized Fermat Equations

$$
S=\operatorname{Spec}\left(\mathbb{Z}[x, y, z] /\left(A x^{p}+B y^{q}-C z^{r}\right)\right) \backslash\{x=y=z=0\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3}
$$

The group $G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)$ acts on S with weights.

Generalized Fermat Equations

$$
S=\operatorname{Spec}\left(\mathbb{Z}[x, y, z] /\left(A x^{p}+B y^{q}-C z^{r}\right)\right) \backslash\{x=y=z=0\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3}
$$

The group $G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)$ acts on S with weights.
We can form the curve $X=S / G$ whose points are exactly the equivalence classes of solutions:

$$
\begin{aligned}
& X(\mathbb{Z})=\left\{x, y, z \in R \mid A x^{p}+B y^{q}=C z^{r}, \text { nontriv., prim. }\right\} / \sim \\
& \quad \text { where } g \cdot(x, y, z) \sim(x, y, z) .
\end{aligned}
$$

Upside: these are easier to count than $S(\mathbb{Z})$. Downside: the geometry of X is bad!

Generalized Fermat Equations

$S=\operatorname{Spec}\left(\mathbb{Z}[x, y, z] /\left(A x^{p}+B y^{q}-C z^{r}\right)\right) \backslash\{x=y=z=0\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3}$
The group $G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)$ acts on S with weights.
We can form the stacky curve $\mathcal{X}=[S / G]$ whose points remember the symmetries of each solution:
$\mathcal{X}(\mathbb{Z})$: objects: nontriv., prim. solutions to $A x^{p}+B y^{q}=C z^{r}$ morphisms: $(x, y, z) \xrightarrow{g} g \cdot(x, y, z)$.

Upside: these are easier to count than $S(\mathbb{Z})$. Downside: none - stacks are awesome!

Stacks

Rather than give a technical definition of a stack, here's a meme:

Stacks

Example

For a group G acting on a space Y, we can form the quotient space Y / G whose points are the equivalence classes of points under G :

Stacks

Example

For a group G acting on a space Y, we can form the quotient stack $[Y / G]$ whose points are the groupoid of G-orbits:

Special case: the classifying stack $[* / G]=B G$:

Stacky Curves

Here's an informal definition of a stacky curve:
A stacky curve \mathcal{X} consists of an ordinary curve X, together with a finite number of marked points P_{1}, \ldots, P_{n}, each of which is decorated with a number $e_{i}=$ order of the group of symmetries of P_{i}.

Stacky Curves

Here's a cartoon of our stacky curve $[S / G]$, where $S=$ primitive integer solutions to $A x^{p}+B y^{q}=C z^{r}$:

Generalized Fermat Equations, Revisited

To find solutions to $A x^{p}+B y^{q}=C z^{r}$, we can exploit the geometry of $\mathcal{X}=[S / G]:$

Generalized Fermat Equations, Revisited

To find solutions to $A x^{p}+B y^{q}=C z^{r}$, we can exploit the geometry of $\mathcal{X}=[S / G]:$

(1) Find a nice map $C_{0} \rightarrow \mathcal{X}$ from a curve C_{0} whose points are easy to find (e.g. a conic).

Generalized Fermat Equations, Revisited

To find solutions to $A x^{p}+B y^{q}=C z^{r}$, we can exploit the geometry of $\mathcal{X}=[S / G]:$

(1) Find a nice map $C_{0} \rightarrow \mathcal{X}$ from a curve C_{0} whose points are easy to find (e.g. a conic).
(2) Compute all twists of C_{0} and their points.

Generalized Fermat Equations, Revisited

To find solutions to $A x^{p}+B y^{q}=C z^{r}$, we can exploit the geometry of $\mathcal{X}=[S / G]:$

(1) Find a nice map $C_{0} \rightarrow \mathcal{X}$ from a curve C_{0} whose points are easy to find (e.g. a conic).
(2) Compute all twists of C_{0} and their points.
(3) Use descent to identify points on \mathcal{X}.

Generalized Fermat Equations, Revisited

Example

For $\mathcal{X}: x^{2}+y^{2}=z^{2}$, there is an étale map

and \mathbb{P}^{1} has infinitely many points which descend, so there are infinitely many primitive Pythagorean triples.

Generalized Fermat Equations, Revisited

Example (Poonen-Schaeffer-Stoll)

For $\mathcal{X}: x^{2}+y^{3}=z^{7}$, there is an étale map

where C is the Klein quartic, defined by $x^{3} y+y^{3}+x=0$. Descending points from C and its 10 twists gives 16 primitive solutions:

$$
\begin{aligned}
& (\pm 1,-1,0), \quad(\pm 1,0,1), \quad(0, \pm 1, \pm 1), \quad(\pm 3,-2,1), \\
& (\pm 71,-17,2), \quad(\pm 2213459,1414,65), \\
& (\pm 215312283,9262,113), \\
& (\pm 21063928,-76271,17) .
\end{aligned}
$$

Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if $X(\mathbb{Q}) \neq \varnothing$ is equivalent to $X\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all completions $\mathbb{Q}_{p}, p \leq \infty$.

Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if $X(\mathbb{Q}) \neq \varnothing$ is equivalent to $X\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all completions $\mathbb{Q}_{p}, p \leq \infty$.

Let $g=g(X)$ be the genus of X. It is known that:

- (Hasse-Minkowski) If $g=0$, the LGP holds for X.
- There are counterexamples to the LGP for all $g>0$. For example, $X: 2 y^{2}=1-17 x^{4}$.

genus 0

genus 1

genus 2

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X}, we pose the local-global principle for integral points:
is $\mathcal{X}(\mathbb{Z}) \neq \varnothing$ equivalent to $\mathcal{X}\left(\mathbb{Z}_{p}\right) \neq \varnothing$ for all completions \mathbb{Z}_{p} ?

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X}, we pose the local-global principle for integral points:

$$
\text { is } \mathcal{X}(\mathbb{Z}) \neq \varnothing \text { equivalent to } \mathcal{X}\left(\mathbb{Z}_{p}\right) \neq \varnothing \text { for all completions } \mathbb{Z}_{p} \text { ? }
$$

This time, the genus $g=g(\mathcal{X})$ can be rational:

$$
g(\mathcal{X})=g(X)+\frac{1}{2} \sum_{i=1}^{n} \frac{e_{i}-1}{e_{i}}
$$

where X is the coarse space and e_{1}, \ldots, e_{n} are the orders of the automorphisms groups at the finite number of stacky points.

When \mathcal{X} is a wild stacky curve, I proved a more general formula for $g(\mathcal{X})$.

Local-Global Principle for Stacky Curves

Example

Our stacky curve $[S / G]$, where $S=$ primitive integer solutions to $A x^{p}+B y^{q}=C z^{r}$, has genus $g=\frac{1}{2}\left(3-\frac{1}{p}-\frac{1}{q}-\frac{1}{r}\right)$.

For example, the $(2,3,7)$ curve has genus $g=\frac{85}{84}$.

This is the smallest possible genus for a 3-point stacky curve with $g>1$.

Local-Global Principle for Stacky Curves

$$
\text { For } \mathcal{X}=[S / G] \text { where } S: A x^{p}+B y^{q}=C z^{r}, g=\frac{1}{2}\left(3-\frac{1}{p}-\frac{1}{q}-\frac{1}{r}\right) \text {. }
$$

Theorem (Bhargava-Poonen)

(1) If $g<\frac{1}{2}$, the LGP holds.
(2) There are counterexamples to the LGP when $g=\frac{1}{2}$.

Theorem (Darmon-Granville)

In the $(2,2, n)$ case, with $g=\frac{n-1}{n}$, there are counterexamples to the LGP.

Joint work with Duque-Rosero, Keyes, Roy, Sankar, Wang (in progress): a complete solution in the $(2,2, n)$ case.

Local-Global Principle for Stacky Curves

Almost Theorem (Duque-Rosero-Keyes-K.-Roy-Sankar-Wang)

Let \mathcal{Y} be the stacky curve associated to the generalized Fermat equation $x^{2}+B y^{2}=C z^{n}$, with n odd, and set $K=\mathbb{Q}(\sqrt{-B})$ and $R=\mathbb{Z}\left[\frac{1}{2 n C}\right]$. Assuming $\mathrm{Cl}(K)=\{1\}$,
(1) There is a finite list of conics $\left\{\mathcal{C}_{d}^{\prime}\right\}$ of the form $\mathcal{C}_{d}^{\prime}=\{u v=C d w\} \subseteq \mathbb{P}(1,1,2)$ indexed by $d \in H^{1}\left(R, \mu_{n}\right)$ admitting étale covers $\pi_{d}: \mathcal{C}_{d}^{\prime} \rightarrow \mathcal{Y}_{K}$ such that

$$
\mathcal{Y}_{K}\left(R_{K}\right)=\coprod_{d \in H^{1}\left(R, \mu_{n}\right)} \pi_{d}\left(\mathcal{C}_{d}^{\prime}\left(R_{K}\right)\right) .
$$

(2) The local-global principle for R-integral points holds for \mathcal{Y} if and only if there exists $d \in H^{1}\left(R, \mu_{n}\right)$ and a point $[u: v: w] \in \mathcal{C}_{d}^{\prime}\left(R_{K}\right)$ such that $\frac{u^{n}}{d C^{(n-1) / 2}}$ and $\frac{v^{n}}{d^{n-1} C^{(n-1) / 2}}$ are Galois conjugates (under the action of $\operatorname{Gal}(K / \mathbb{Q})$).

Local-Global Principle for Stacky Curves

Almost Theorem (Duque-Rosero-Keyes-K.-Roy-Sankar-Wang)

Let \mathcal{Y} be the stacky curve associated to the generalized Fermat equation $x^{2}+B y^{2}=C z^{n}$. Assuming $\mathrm{Cl}(K)=\{1\}$,
(1) There is a finite list of conics $\left\{\mathbb{C}_{d}^{\prime}\right\}$ capturing the R_{K}-points of \mathcal{Y}_{K}.
(2) The local-global principle for R-integral points on \mathcal{Y} is encoded in the R_{K}-points of $\left\{C_{d}^{\prime}\right\}$.

Other goals:

- Remove the $\mathrm{Cl}(K)=\{1\}$ condition. (Done)
- Replace $x^{2}+B y^{2}$ with an arbitrary integral quadratic form $q(x, y)$.
- Adapt this strategy to spherical generalized Fermat equations with coefficients, e.g. $A x^{2}+B y^{3}=C z^{5}$.

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.
Fact 2: Modular curves give rise to modular forms.

Modular Forms

Let $\mathfrak{h}=\{z \in \mathbb{C}: \operatorname{im}(z)>0\}$ be the upper half-plane in \mathbb{C}.

A modular form of weight $2 k$ is a holomorphic function $f: \mathfrak{h} \rightarrow \mathbb{C}$ such that
(1) For all $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}), f(z)=(c z+d)^{-2 k} f(g z)$.
(2) f is holomorphic at ∞.

Modular Forms

Let $\mathfrak{h}=\{z \in \mathbb{C}: \operatorname{im}(z)>0\}$ be the upper half-plane in \mathbb{C}.

A modular form of weight $2 k$ is a holomorphic function $f: \mathfrak{h} \rightarrow \mathbb{C}$ such that
(1) For all $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}), f(z)=(c z+d)^{-2 k} f(g z)$.
(2) f is holomorphic at ∞.

Informal version: modular forms are highly symmetric holomorphic functions on the upper half-plane in \mathbb{C}.

Modular Forms

Given a modular form $f: \mathfrak{h} \rightarrow \mathbb{C}$, we can define a differential form $\omega=f(z) d z^{k}$.

By the symmetry of f, ω is not just defined on the upper half-plane, but on the quotient $\mathfrak{h} / S L_{2}(\mathbb{Z})$.

Compactifying by adding a point at ∞, this quotient $\overline{\mathfrak{h} / S L_{2}(\mathbb{Z})}$ becomes isomorphic to $\mathcal{X}(1)$, the moduli stack of elliptic curves.

Upshot: modular forms act like "functions" on the moduli stack $\mathcal{X}(1)$.
This allows one to define modular forms over any field K, as differential forms on the moduli stack $\mathcal{X}(1)$ of elliptic curves over K.

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

For $p>3$, the story for $\mathcal{X}(1)$ is the same as over \mathbb{C} :

and $\bigoplus \mathcal{M}_{k} \cong \mathbb{F}_{p}\left[x_{4}, x_{6}\right]$ (originally due to Deligne, Edixhoven).
However, over \mathbb{F}_{2} and \mathbb{F}_{3}, the stacky structure of $\mathcal{X}(1)$ looks different:

Modular Forms Mod 3

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

Theorem (K.-Zureick-Brown 2024+e)

For the wild stacky curve $\mathcal{X}(1)$ over \mathbb{F}_{3},

the ring of modular forms is $\bigoplus \mathcal{M}_{k} \cong \mathbb{F}_{3}\left[x_{2}, x_{12}\right]$.

Modular Forms Mod 2

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

Theorem (K.-Zureick-Brown 2024+e)

For the wild stacky curve $\mathcal{X}(1)$ over \mathbb{F}_{2},

the ring of modular forms is $\bigoplus \mathcal{M}_{k} \cong \mathbb{F}_{2}\left[x_{1}, x_{12}\right]$.

Thank you!

Questions?

