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Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.
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Motivation: Find all integer solutions (x, y, z) to the generalized
Fermat equation

Axp +Byq = Czr

for A,B,C ∈ Z and p, q, r ≥ 2.
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Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Byq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to x2 + y2 = z2,
with primitive (gcd(x, y, z) = 1) solutions parametrized by

(x, y, z) =

(
s2 − t2

2
, st,

s2 + t2

2

)
for odd, coprime s > t ≥ 1.

(
s2−t2
s2+t2 ,

2st
s2+t2

)
slope = t

s
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Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Byq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are no integer solutions to xn + yn = zn for
n > 2.

Assume n is prime. If (x0, y0, z0) were such a solution, it would
determine an elliptic curve

E : y2 = x(x− xn0 )(x+ yn0 )

Ribet showed E is not modular. However, Wiles showed all such
elliptic curves are modular, a contradiction.



Generalized Fermat Equations Stacky Curves Local-Global Principles Modular Forms

Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Byq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are no integer solutions to xn + yn = zn for
n > 2. Assume n is prime. If (x0, y0, z0) were such a solution, it would
determine an elliptic curve

E : y2 = x(x− xn0 )(x+ yn0 )

Ribet showed E is not modular. However, Wiles showed all such
elliptic curves are modular, a contradiction.
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Generalized Fermat Equations

Takeaway: Integer solutions to Axp +Byq = Czr can be studied
using geometry.
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Generalized Fermat Equations

Here are some more known cases of Axp +Byq = Czr.
(Beukers, Darmon–Granville) Let χ = 1

p +
1
q +

1
r − 1. The

equation xp + yq = zr has infinitely many primitive solutions
when χ > 0 and finitely many when χ < 0.

(Mordell, Zagier, Edwards) When χ > 0, the primitive solutions to
xp + yq = zr may always be parametrized explicitly (as in the
(2, 2, 2) case).

(Fermat, Euler, et al.) The case χ = 0 only occurs for
(2, 3, 6), (4, 4, 2), (3, 3, 3) and permutations of these. In each case,
descent proves there are finitely many primitive solutions.

(2, 3, 7) was solved by Poonen–Schaeffer–Stoll (2007).

(2, 3, 8), (2, 3, 9) were solved by Bruin (1999, 2004).

etc.
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Generalized Fermat Equations

Question: How do we count solutions to such equations?

One strategy is to form the surface of (primitive, nontrivial) solutions
in 3-dimensional space over Z:

S = Spec(Z[x, y, z]/(Axp +Byq − Czr))r {x = y = z = 0} ⊆ A3
Z.

For any ring R, this keeps track of the R-solutions:

S(R) = {x, y, z ∈ R | Axp +Byq = Czr, nontrivial, primitive}.
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Generalized Fermat Equations

S = Spec(Z[x, y, z]/(Axp +Byq − Czr))r {x = y = z = 0} ⊆ A3
Z

The group G = Gm · (µp × µq × µr) acts on S with weights.

We can form the curve X = S/G whose points are exactly the
equivalence classes of solutions:

X(Z) = {x, y, z ∈ R | Axp +Byq = Czr, nontriv., prim.}/ ∼
where g · (x, y, z) ∼ (x, y, z).

Upside: these are easier to count than S(Z).
Downside: the geometry of X is bad!
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Generalized Fermat Equations

S = Spec(Z[x, y, z]/(Axp +Byq − Czr))r {x = y = z = 0} ⊆ A3
Z

The group G = Gm · (µp × µq × µr) acts on S with weights.

We can form the stacky curve X = [S/G] whose points remember
the symmetries of each solution:

X (Z) : objects: nontriv., prim. solutions to Axp +Byq = Czr

morphisms: (x, y, z) g−→ g · (x, y, z).

Upside: these are easier to count than S(Z).
Downside: none - stacks are awesome!
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Stacks

Rather than give a technical definition of a stack, here’s a meme:
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Stacks

Example

For a group G acting on a space Y , we can form the quotient space
Y/G whose points are the equivalence classes of points under G:

Y• • • • •

Y/G• • •

•g ∈ G
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Stacks

Example

For a group G acting on a space Y , we can form the quotient stack
[Y/G] whose points are the groupoid of G-orbits:

Y• • • • •

[Y/G]• • • • •

Special case: the classifying stack [∗/G] = BG:

•g ∈ G
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Stacky Curves

Here’s an informal definition of a stacky curve:

A stacky curve X consists of an ordinary curve X, together with a
finite number of marked points P1, . . . , Pn, each of which is decorated
with a number ei = order of the group of symmetries of Pi.

X
e1 e2 e3 · · · en
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Stacky Curves

Here’s a cartoon of our stacky curve [S/G], where S = primitive
integer solutions to Axp +Byq = Czr:

p q r



Generalized Fermat Equations Stacky Curves Local-Global Principles Modular Forms

Generalized Fermat Equations, Revisited

To find solutions to Axp +Byq = Czr, we can exploit the geometry of
X = [S/G]:

X

C0C1 C2
twist twist
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Generalized Fermat Equations, Revisited

To find solutions to Axp +Byq = Czr, we can exploit the geometry of
X = [S/G]:

X

C0C1 C2
twist twist

(1) Find a nice map C0 → X from a curve C0 whose points are easy
to find (e.g. a conic).
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Generalized Fermat Equations, Revisited

To find solutions to Axp +Byq = Czr, we can exploit the geometry of
X = [S/G]:

X

C0C1 C2
twist twist

(1) Find a nice map C0 → X from a curve C0 whose points are easy
to find (e.g. a conic).
(2) Compute all twists of C0 and their points.
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Generalized Fermat Equations, Revisited

To find solutions to Axp +Byq = Czr, we can exploit the geometry of
X = [S/G]:

X

C0C1 C2
twist twist

(1) Find a nice map C0 → X from a curve C0 whose points are easy
to find (e.g. a conic).
(2) Compute all twists of C0 and their points.
(3) Use descent to identify points on X .
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Generalized Fermat Equations, Revisited

Example

For X : x2 + y2 = z2, there is an étale map

X

P1

and P1 has infinitely many points which descend, so there are
infinitely many primitive Pythagorean triples.
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Generalized Fermat Equations, Revisited

Example (Poonen–Schaeffer–Stoll)

For X : x2 + y3 = z7, there is an étale map

X

CC1 C2 · · · C10
twist twist

where C is the Klein quartic, defined by x3y+ y3 + x = 0. Descending
points from C and its 10 twists gives 16 primitive solutions:

(±1,−1, 0), (±1, 0, 1), (0,±1,±1), (±3,−2, 1),
(±71,−17, 2), (±2213459, 1414, 65), (±15312283, 9262, 113),
(±21063928,−76271, 17).
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Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if
X(Q) 6= ∅ is equivalent to X(Qp) 6= ∅ for all completions Qp, p ≤ ∞.

Let g = g(X) be the genus of X. It is known that:
(Hasse–Minkowski) If g = 0, the LGP holds for X.

There are counterexamples to the LGP for all g > 0.
For example, X : 2y2 = 1− 17x4.
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Local-Global Principle for Stacky Curves

For a stacky curve X , we pose the local-global principle for integral
points:

is X (Z) 6= ∅ equivalent to X (Zp) 6= ∅ for all completions Zp?

This time, the genus g = g(X ) can be rational:

g(X ) = g(X) +
1

2

n∑
i=1

ei − 1

ei

where X is the coarse space and e1, . . . , en are the orders of the
automorphisms groups at the finite number of stacky points.

When X is a wild stacky curve, I proved a more general formula for
g(X ).
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Local-Global Principle for Stacky Curves

Example

Our stacky curve [S/G], where S = primitive integer solutions to
Axp +Byq = Czr, has genus g = 1

2

(
3− 1

p −
1
q −

1
r

)
.

p q r

For example, the (2, 3, 7) curve has genus g = 85
84 .

This is the smallest possible genus for a 3-point stacky curve with
g > 1.
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Local-Global Principle for Stacky Curves

For X = [S/G] where S : Axp +Byq = Czr, g = 1
2

(
3− 1

p −
1
q −

1
r

)
.

Theorem (Bhargava–Poonen)
1 If g < 1

2 , the LGP holds.
2 There are counterexamples to the LGP when g = 1

2 .

Theorem (Darmon–Granville)

In the (2, 2, n) case, with g = n−1
n , there are counterexamples to the

LGP.

Joint work with Duque-Rosero, Keyes, Roy, Sankar, Wang (in
progress): a complete solution in the (2, 2, n) case.
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Local-Global Principle for Stacky Curves

Almost Theorem (Duque-Rosero–Keyes–K.–Roy–Sankar–Wang)

Let Y be the stacky curve associated to the generalized Fermat
equation x2 +By2 = Czn, with n odd, and set K = Q

(√
−B

)
and

R = Z
[

1
2nC

]
. Assuming Cl(K) = {1},

1 There is a finite list of conics {C′d} of the form
C′d = {uv = Cdw} ⊆ P(1, 1, 2) indexed by d ∈ H1(R,µn)
admitting étale covers πd : C′d → YK such that

YK(RK) =
∐

d∈H1(R,µn)

πd(C′d(RK)).

2 The local-global principle for R-integral points holds for Y if and
only if there exists d ∈ H1(R,µn) and a point [u : v : w] ∈ C′d(RK)
such that un

dC(n−1)/2 and vn

dn−1C(n−1)/2 are Galois conjugates
(under the action of Gal(K/Q)).
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Local-Global Principle for Stacky Curves

Almost Theorem (Duque-Rosero–Keyes–K.–Roy–Sankar–Wang)

Let Y be the stacky curve associated to the generalized Fermat
equation x2 +By2 = Czn. Assuming Cl(K) = {1},

1 There is a finite list of conics {C′d} capturing the RK-points of
YK .

2 The local-global principle for R-integral points on Y is encoded in
the RK-points of {C ′d}.

Other goals:
Remove the Cl(K) = {1} condition. (Done)
Replace x2 +By2 with an arbitrary integral quadratic form q(x, y).
Adapt this strategy to spherical generalized Fermat equations
with coefficients, e.g. Ax2 +By3 = Cz5.
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Another Example of a Stacky Curve

Here’s another important stacky curve:

4 6
X (1)

Fact: X (1) ∼=M1,1, the compactified moduli stack of elliptic curves.

Fact 2: Modular curves give rise to modular forms.
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Modular Forms

Let h = {z ∈ C : im(z) > 0} be the upper half-plane in C.

A modular form of weight 2k is a holomorphic function f : h→ C
such that

1 For all g =

(
a b
c d

)
∈ SL2(Z), f(z) = (cz + d)−2kf(gz).

2 f is holomorphic at∞.

Informal version: modular forms are highly symmetric holomorphic
functions on the upper half-plane in C.
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Modular Forms

Given a modular form f : h→ C, we can define a differential form
ω = f(z) dzk.

By the symmetry of f , ω is not just defined on the upper half-plane,
but on the quotient h/SL2(Z).

Compactifying by adding a point at∞, this quotient h/SL2(Z)
becomes isomorphic to X (1), the moduli stack of elliptic curves.

Upshot: modular forms act like “functions” on the moduli stack X (1).

This allows one to define modular forms over any field K, as
differential forms on the moduli stack X (1) of elliptic curves over K.
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Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the
space of mod p modular forms using the stacky structure of X (1) and
other modular curves over Fp.

For p > 3, the story for X (1) is the same as over C:

4 6
X (1)

and
⊕
Mk
∼= Fp[x4, x6] (originally due to Deligne, Edixhoven).

However, over F2 and F3, the stacky structure of X (1) looks different:

G

nonabelian!
X (1)
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Modular Forms Mod 3

Joint work with D. Zureick-Brown (in progress): describe the
space of mod p modular forms using the stacky structure of X (1) and
other modular curves over Fp.

Theorem (K.–Zureick-Brown 2024+ε)

For the wild stacky curve X (1) over F3,

Z/4Z n Z/3Z
X (1)

the ring of modular forms is
⊕
Mk
∼= F3[x2, x12].
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Modular Forms Mod 2

Joint work with D. Zureick-Brown (in progress): describe the
space of mod p modular forms using the stacky structure of X (1) and
other modular curves over Fp.

Theorem (K.–Zureick-Brown 2024+ε)

For the wild stacky curve X (1) over F2,

Z/3Z nQ8
X (1)

the ring of modular forms is
⊕
Mk
∼= F2[x1, x12].
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Thank you!

Questions?
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