Stacky Curves and Generalized Fermat Equations

Andrew J. Kobin

ajkobin@emory.edu
Rethinking Number Theory @ AWM Symposium
October 1, 2023

Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.

Generalized Fermat Equations

Motivation: Find all integer solutions (x, y, z) to the generalized Fermat equation

$$
A x^{p}+B x^{q}=C z^{r}
$$

for $A, B, C \in \mathbb{Z}$ and $p, q, r \geq 2$.

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(2,2,2))$

Famously, there are infinitely many integer solutions to $x^{2}+y^{2}=z^{2}$, with primitive $(\operatorname{gcd}(x, y, z)=1)$ solutions parametrized by

$$
(x, y, z)=\left(\frac{s^{2}-t^{2}}{2}, s t, \frac{s^{2}+t^{2}}{2}\right) \text { for odd, coprime } s>t \geq 1
$$

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(2,2,2))$

Famously, there are infinitely many integer solutions to $x^{2}+y^{2}=z^{2}$, with primitive $(\operatorname{gcd}(x, y, z)=1)$ solutions parametrized by

$$
(x, y, z)=\left(\frac{s^{2}-t^{2}}{2}, s t, \frac{s^{2}+t^{2}}{2}\right) \text { for odd, coprime } s>t \geq 1
$$

P.

@p_blade_

Wow. Another day as an adult without using the Pythagorean
Theorem.

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(2,2,2))$

Famously, there are infinitely many integer solutions to $x^{2}+y^{2}=z^{2}$, with primitive $(\operatorname{gcd}(x, y, z)=1)$ solutions parametrized by

$$
(x, y, z)=\left(\frac{s^{2}-t^{2}}{2}, s t, \frac{s^{2}+t^{2}}{2}\right) \quad \text { for odd, coprime } s>t \geq 1
$$

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(n, n, n))$

Also famously, there are no integer solutions to $x^{n}+y^{n}=z^{n}$ for $n>2$.

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(n, n, n))$

Also famously, there are no integer solutions to $x^{n}+y^{n}=z^{n}$ for $n>2$. Assume n is prime. If (x_{0}, y_{0}, z_{0}) were such a solution, it would determine an elliptic curve

Ribet showed E is not modular. However, Wiles showed all such elliptic curves are modular, a contradiction.

Generalized Fermat Equations

Takeaway: Integer solutions to $A x^{p}+B x^{q}=C z^{r}$ can be studied using geometry.

Generalized Fermat Equations

Here are some more known cases of $A x^{p}+B x^{q}=C z^{r}$.

- (Beukers, Darmon-Granville) Let $\chi=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1$. The equation $x^{p}+y^{q}=z^{r}$ has infinitely many primitive solutions when $\chi>0$ and finitely many when $\chi<0$.

Generalized Fermat Equations

Here are some more known cases of $A x^{p}+B x^{q}=C z^{r}$.

- (Beukers, Darmon-Granville) Let $\chi=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1$. The equation $x^{p}+y^{q}=z^{r}$ has infinitely many primitive solutions when $\chi>0$ and finitely many when $\chi<0$.
- (Mordell, Zagier, Edwards) When $\chi>0$, the primitive solutions to $x^{p}+y^{q}=z^{r}$ may always be parametrized explicitly (as in the $(2,2,2)$ case).
- (Fermat, Euler, et al.) The case $\chi=0$ only occurs for $(2,3,6),(4,4,2),(3,3,3)$ and permutations of these. In each case, descent proves there are finitely many primitive solutions.
- $(2,3,7)$ was solved by Poonen-Schaeffer-Stoll (2007).
- $(2,3,8),(2,3,9)$ were solved by Bruin $(1999,2004)$.
- etc.

Generalized Fermat Equations

Question: How do we count solutions to such equations?

Generalized Fermat Equations

Question: How do we count solutions to such equations?
One strategy is to form the surface of (primitive, nontrivial) solutions in 3-dimensional space over \mathbb{Z} :

$$
S=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid A x^{p}+B y^{q}=C z^{r}, \text { nontrivial, primitive }\right\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3} .
$$

Generalized Fermat Equations

$S=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid A x^{p}+B y^{q}=C z^{r}\right.$, nontrivial, primitive $\}$
Let G be the group of symmetries of $S .\left(G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)\right)$

Generalized Fermat Equations

$S=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid A x^{p}+B y^{q}=C z^{r}\right.$, nontrivial, primitive $\}$
Let G be the group of symmetries of $S .\left(G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)\right)$
We can form the curve $X=S / G$ whose points are exactly the equivalence classes of solutions:

$$
\begin{aligned}
& X(\mathbb{Z})=\left\{x, y, z \in R \mid A x^{p}+B y^{q}=C z^{r}, \text { nontriv., prim. }\right\} / \sim \\
& \quad \text { where } g \cdot(x, y, z) \sim(x, y, z) .
\end{aligned}
$$

Upside: these are easier to count than $S(\mathbb{Z})$. Downside: the geometry of X is bad!

Generalized Fermat Equations

$S=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid A x^{p}+B y^{q}=C z^{r}\right.$, nontrivial, primitive $\}$
Let G be the group of symmetries of $S .\left(G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)\right)$
We can form the stacky curve $\mathcal{X}=[S / G]$ whose points remember the symmetries of each solution:
$\mathcal{X}(R)$: objects: nontriv., prim. solutions to $A x^{p}+B y^{q}=C z^{r}$ morphisms: $(x, y, z) \xrightarrow{g} g \cdot(x, y, z)$.

Upside: these are easier to count than $S(\mathbb{Z})$. Downside: none - stacks are awesome!

Stacky Curves

Here's an informal definition of a stacky curve:
A stacky curve \mathcal{X} consists of an ordinary curve X, together with a finite number of marked points P_{1}, \ldots, P_{n}, each of which is decorated with a number $e_{i}=$ order of the group of symmetries of P_{i}.

Stacky Curves

Here's a cartoon of our stacky curve $[S / G]$, where $S=$ primitive integer solutions to $A x^{p}+B x^{q}=C z^{r}$:

Generalized Fermat Equations, Revisited

To solve $A x^{p}+B x^{q}=C z^{r}$, exploit the geometry of $\mathcal{X}=[S / G]$.

Example (Poonen-Schaeffer-Stoll ('07))

For $\mathcal{X}: x^{2}+y^{3}=z^{7}$, there is an étale map

where C is the Klein quartic, defined by $x^{3} y+y^{3}+x=0$. Descending points from C and its 10 twists gives 16 primitive solutions:

$$
\begin{aligned}
& (\pm 1,-1,0), \quad(\pm 1,0,1), \quad(0, \pm 1, \pm 1), \quad(\pm 3,-2,1), \\
& (\pm 71,-17,2), \quad(\pm 2213459,1414,65), \\
& (\pm 15312283,9262,113), \\
& (\pm 21063928,-76271,17) .
\end{aligned}
$$

Local-Global Principle for Curves

For a curve X, the local-global principle says that:
X having \mathbb{Q}-points is equivalent to X having \mathbb{Q}_{p}-points for all p.

Local-Global Principle for Curves

For a curve X, the local-global principle says that:
X having \mathbb{Q}-points is equivalent to X having \mathbb{Q}_{p}-points for all p.
Let $g=g(X)$ be the genus of X. It is known that:

- (Hasse-Minkowski) If $g=0$, the LGP holds for X.
- There are counterexamples to the LGP for all $g>0$. For example, $X: 2 y^{2}=1-17 x^{4}$.

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X}, the local-global principle says that:
\mathcal{X} having \mathbb{Z}-points is equivalent to \mathcal{X} having \mathbb{Z}_{p}-points for all p.

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X}, the local-global principle says that:
\mathcal{X} having \mathbb{Z}-points is equivalent to \mathcal{X} having \mathbb{Z}_{p}-points for all p.
This time, the genus $g=g(\mathcal{X})$ can be rational:

$$
g(\mathcal{X})=g(X)+\frac{1}{2} \sum_{i=1}^{n} \frac{e_{i}-1}{e_{i}}
$$

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X}, the local-global principle says that:
\mathcal{X} having \mathbb{Z}-points is equivalent to \mathcal{X} having \mathbb{Z}_{p}-points for all p.
This time, the genus $g=g(\mathcal{X})$ can be rational:

$$
g(\mathcal{X})=g(X)+\frac{1}{2} \sum_{i=1}^{n} \frac{e_{i}-1}{e_{i}}
$$

Example

For example, the $(2,3,7)$ curve has genus $g=\frac{85}{84}$.

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X}, the local-global principle says that:
\mathcal{X} having \mathbb{Z}-points is equivalent to \mathcal{X} having \mathbb{Z}_{p}-points for all p.

Theorem (Bhargava-Poonen ('20))

(1) If $g<\frac{1}{2}$, the LGP holds.
(2) There are counterexamples to the LGP when $g=\frac{1}{2}$.

Theorem (Darmon-Granville ('95))

When $g=\frac{n-1}{n}$, there are counterexamples to the LGP coming from the generalized Fermat equation with exponents $(2,2, n)$.

Joint work with Duque-Rosero, Keyes, Roy, Sankar, Wang (in progress): a complete solution in the ($2,2, n$) case.

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms as sections of line bundles on the stacky curve $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms as sections of line bundles on the stacky curve $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

For $p>3$, the story for $\mathcal{X}(1)$ is the same as before:

and $\bigoplus \mathcal{M}_{k} \cong \mathbb{F}_{p}\left[x_{4}, x_{6}\right]$ (originally due to Edixhoven).
However, over \mathbb{F}_{2} and \mathbb{F}_{3}, the stacky structure of $\mathcal{X}(1)$ looks different:

Theorem (Deligne ('72), K.-Zureick-Brown ('23+ ϵ))

For $p=2,3$, the ring of modular forms $\bmod p$ is $\mathbb{F}_{p}\left[x_{1}, x_{6}\right]$.

Thank you!

Questions?

