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Introduction

Goal:

Describe Artin-Schreier covers of curves using the language of
stacks.

Natural application to moduli problems in characteristic p > 0 which
are not accessible by strictly scheme-theoretic considerations.

Moduli problems are ‘the right framework’ to study modular forms
– at least, for an algebraic geometer like me :)
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Motivation

Modular forms have a natural interpretation as sections of certain line
bundles over a moduli space – hence the name ‘modular’ form.

Here’s an easy example to keep in mind:

Example

Let Γ = PSL2(Z) be the modular group, which acts on the upper half
plane h = {z ∈ C : im(z) > 0} by fractional linear transformations.
The quotient Y = h/Γ is an affine curve whose projective closure
X ∼= P1

C as Riemann surfaces.

Modular forms of weight k ←→ sections of the line bundle ω⊗kX

←→ Γ-invariant sections of ω⊗kC

where f(z) ∈Mk ⇐⇒ f(z) dzk is Γ-invariant.
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Moduli Problems

Let X be a space (topological/variety/scheme) and G a group
(topological/algebraic).

Then BunG(X) denotes the category of isomorphism classes of
principal G-bundles P → X.

Theorem
There exists a space BG and a natural isomorphism of functors

BunG(X)
∼−→ [X,BG].

BG is called a classifying space for principal G-bundles.
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Moduli Problems

Theorem
There exists a space BG and a natural isomorphism of functors

BunG(X)
∼−→ [X,BG].

That is, there exist a universal G-bundle EG→ BG such that
principal bundles (up to isomorphism) P → X correspond bijectively
to classifying maps f : X → BG (up to homotopy):

P EG

X BG = [•/G]
f
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Moduli Problems via Stacks

Example

When G = GLn(k), principal GLn(k)-bundles↔ rank n vector
bundles. In particular, principal Gm-bundles↔ line bundles.

Proposition

There is a bijection

(L, s)←→ [A1/Gm](X) = Hom(X, [A1/Gm])

where L→ X is a line bundle with section s.

Here, [A1/Gm] is an “infinitesimal thickening” of the classifying stack
BGm = [•/Gm].
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Kummer Theory

A natural question is: for an algebraic variety (or scheme) X with a
line bundle L→ X, does there exist another bundle E → X such that
E⊗r = L?

This has a natural answer in terms of Kummer theory.
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Kummer Theory

Recall that a Kummer extension is a field extension L/k which is
Galois with cyclic Galois group Gal(L/k) ∼= Z/rZ for some r ≥ 1.

Explicitly, every Kummer extension is of the form

L = k[x]/(xr − s) for r ≥ 1, s ∈ k×.

The rth universal Kummer stack is the cover of stacks

[A1/Gm] −→ [A1/Gm], x 7→ xr
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Kummer Theory

We can construct “rth roots” of line bundles:

Definition (Cadman, ‘07)

For a stack X, a line bundle L→ X with section s and r ≥ 1, the rth
root stack r

√
(L, s)/X is the fibre product

r
√

(L, s)/X [A1/Gm]

X [A1/Gm]

r

where X → [A1/Gm] is the morphism determined by (L, s) and “r” is
the universal root stack.

This allows one to study quotients of schemes in characteristic 0 as
stacky objects.
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Artin-Schreier Theory

What to do when char k = p > 0? Notice that x 7→ xp is the
Frobenius... does not give an étale cover.

An Artin-Schreier extension of a characteristic p field is a field
extension L/k which is Galois with group Gal(L/k) ∼= Z/pZ. Every
A-S extension is of the form

L = k[x]/(xp − x− a) for some a ∈ k

A-S extensions are uniquely determined by their ramification jump, an
integer m defined using the higher ramification filtration of Gal(L/k).

So to keep track of this additional arithmetic information, we need
more structure than [A1/Gm] ≈ point + fuzz.
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Artin-Schreier Theory

For m ∈ Z, the “weighted projective line” is P1 with one stacky point of
order m:

P(m, 1)

m

Ga P(m, 1) additively by λ · x = x+ λ away from the stacky point.

Definition
For m ∈ Z, the universal Artin-Schreier stack with jump m is the
cover of stacks

[P(m, 1)/Ga] −→ [P(m, 1)/Ga]

[x, y] 7−→ [xp − xym(p−1), yp]
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Artin-Schreier Theory

Proposition

There is a bijective correspondence

(L, s, f)←→ Hom(X, [P(m, 1)/Ga])

where L→ X is a line bundle with sections s : X → L and
f : X → L⊗m. Explicitly, X → [P(m, 1)/Ga] is x 7→ [f(x), s(x)].

This allows us to construct “Artin-Schreier roots” of line bundles as
follows.
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Artin-Schreier Theory

Definition

For a stack X, a line bundle L→ X and sections
s : X → L, f : X → L⊗m, the Artin-Schreier root stack with jump m
is the fibre product

℘−1m ((L, s, f)/X) [P(m, 1)/Ga]

X [P(m, 1)/Ga]

Ψm

where X → [P(m, 1)/Ga] is the morphism determined by (L, s, f) and
Ψm is the universal Artin-Schreier stack with jump m.
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Artin-Schreier Theory

Example

An affine Artin-Schreier curve is of the form

Y = Spec(k(x)[y]/(yp − y − f(x)))

where f(x) is a rational function of degree m ∈ Z, (m, p) = 1. Then
Y → A1 is étale with group Z/pZ and k(Y )/k(x) is an A-S extension
with jump m.

For X = A1, L = OX , s = x and f = f(x), we have

℘−1m ((OX , x, f)/X) ∼= [Y/(Z/pZ)]

where Z/pZ acts additively. Similar for any X = SpecA.
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Stacky Curves

A stacky curve is a smooth, separated, connected, one-dimensional
Deligne-Mumford stack X over a field k. (Think of X as a smooth
curve X with some finite groups attached to a finite number of points)

X
Z/3Z D4

Call X tame if the orders of its stabilizers are prime to char k.
Otherwise, X is wild.

Define the canonical ring of X to be

R(X ) =

∞⊕
k=0

H0(X , ω⊗kX )

where ωX is the canonical sheaf on X , defined in a similar way as
that of a scheme.
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Stacky Curves

R(X ) =

∞⊕
k=0

H0(X , ω⊗kX )

When X = h/Γ0(N) for a congruence subgroup Γ0(N), then
H0(X , ω⊗kX ) ∼= S2k(N), the space of weight 2k cusp forms of level N .

Voight and Zureick-Brown: combinatorial description of R(X ) when X
is tame, giving dimension formulas for spaces of modular forms in
many cases.

Their proof uses: every tame stacky curve over an algebraically
closed field is a root stack.
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Stacky Curves

To extend this to wild stacky curves, we can use Artin-Schreier
stacks. (Work in progress.)

Example

One would like to obtain dimension formulas for the spaces of
modular forms for the congruence subgroups Γ0(p) and Γ1(p).

Question

Can ℘−1m ((L, s, f)/X) be generalized further to handle cyclic Galois
groups of higher order? Nonabelian groups? (Artin-Schreier-Witt
theory)

For example, there exist stacky quotients of X0(p) with nonabelian
stabilizers.
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Thank you!
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