Understanding Artin-Schreier Covers of Stacks

Andrew J. Kobin

ak5ah@virginia.edu

May 11, 2018

Introduction	Moduli Problems	Kummer Theory	Artin-Schreier Theory	Stacky Curves
Introduction				

Goal:

Goal:

Describe Artin-Schreier covers of curves using the language of stacks.

Goal:

Describe Artin-Schreier covers of curves using the language of stacks.

Natural application to moduli problems in characteristic p > 0 which are not accessible by strictly scheme-theoretic considerations.

Goal:

Describe Artin-Schreier covers of curves using the language of stacks.

Natural application to moduli problems in characteristic p > 0 which are not accessible by strictly scheme-theoretic considerations.

Moduli problems are 'the right framework' to study modular forms

Goal:

Describe Artin-Schreier covers of curves using the language of stacks.

Natural application to moduli problems in characteristic p > 0 which are not accessible by strictly scheme-theoretic considerations.

Moduli problems are 'the right framework' to study modular forms – at least, for an algebraic geometer like me :)

m	rod	110	r
	IUU		

Outline: • Moduli problems

- Moduli problems
- Kummer theory

- Moduli problems
- Kummer theory
- Artin-Schreier theory

- Moduli problems
- Kummer theory
- Artin-Schreier theory
- Stacky curves

Introduction	Moduli Problems	Kummer Theory	Artin-Schreier Theory	Stacky Curves
Motivation				

Introduction	Moduli Problems	Kummer Theory	Artin-Schreier Theory	Stacky Curves
Motivation				

Modular forms have a natural interpretation as sections of certain line bundles over a moduli space

Introduction	Moduli Problems	Kummer Theory	Artin-Schreier Theory	Stacky Curves
Motivation				

Modular forms have a natural interpretation as sections of certain line bundles over a moduli space – hence the name 'modular' form.

Motivation

Modular forms have a natural interpretation as sections of certain line bundles over a moduli space – hence the name 'modular' form.

Here's an easy example to keep in mind:

Example

Let $\Gamma = PSL_2(\mathbb{Z})$ be the modular group, which acts on the upper half plane $\mathfrak{h} = \{z \in \mathbb{C} : \operatorname{im}(z) > 0\}$ by fractional linear transformations.

Motivation

Modular forms have a natural interpretation as sections of certain line bundles over a moduli space – hence the name 'modular' form.

Here's an easy example to keep in mind:

Example

Let $\Gamma = PSL_2(\mathbb{Z})$ be the modular group, which acts on the upper half plane $\mathfrak{h} = \{z \in \mathbb{C} : \operatorname{im}(z) > 0\}$ by fractional linear transformations. The quotient $Y = \mathfrak{h}/\Gamma$ is an affine curve whose projective closure $X \cong \mathbb{P}^1_{\mathbb{C}}$ as Riemann surfaces.

Motivation

Modular forms have a natural interpretation as sections of certain line bundles over a moduli space – hence the name 'modular' form.

Here's an easy example to keep in mind:

Example

Let $\Gamma = PSL_2(\mathbb{Z})$ be the modular group, which acts on the upper half plane $\mathfrak{h} = \{z \in \mathbb{C} : \operatorname{im}(z) > 0\}$ by fractional linear transformations. The quotient $Y = \mathfrak{h}/\Gamma$ is an affine curve whose projective closure $X \cong \mathbb{P}^1_{\mathbb{C}}$ as Riemann surfaces.

Modular forms of weight $k \longleftrightarrow$ sections of the line bundle $\omega_X^{\otimes k}$

 $\longleftrightarrow \Gamma$ -invariant sections of $\omega_{\mathbb{C}}^{\otimes k}$

where $f(z) \in \mathcal{M}_k \iff f(z) dz^k$ is Γ -invariant.

Let X be a space (topological/variety/scheme) and G a group (topological/algebraic).

Let X be a space (topological/variety/scheme) and G a group (topological/algebraic).

Then $\operatorname{Bun}_G(X)$ denotes the category of isomorphism classes of principal *G*-bundles $P \to X$.

Let X be a space (topological/variety/scheme) and G a group (topological/algebraic).

Then $\operatorname{Bun}_G(X)$ denotes the category of isomorphism classes of principal *G*-bundles $P \to X$.

Theorem

There exists a space BG and a natural isomorphism of functors

 $\operatorname{Bun}_G(X) \xrightarrow{\sim} [X, BG].$

Let X be a space (topological/variety/scheme) and G a group (topological/algebraic).

Then $\operatorname{Bun}_G(X)$ denotes the category of isomorphism classes of principal *G*-bundles $P \to X$.

Theorem

There exists a space BG and a natural isomorphism of functors

 $\operatorname{Bun}_G(X) \xrightarrow{\sim} [X, BG].$

BG is called a **classifying space** for principal *G*-bundles.

Theorem

There exists a space BG and a natural isomorphism of functors

 $\operatorname{Bun}_G(X) \xrightarrow{\sim} [X, BG].$

Theorem

There exists a space BG and a natural isomorphism of functors

$$\operatorname{Bun}_G(X) \xrightarrow{\sim} [X, BG].$$

That is, there exist a **universal** *G*-bundle $EG \rightarrow BG$ such that principal bundles (up to isomorphism) $P \rightarrow X$

Theorem

There exists a space BG and a natural isomorphism of functors

$$\operatorname{Bun}_G(X) \xrightarrow{\sim} [X, BG].$$

Theorem

There exists a space BG and a natural isomorphism of functors

$$\operatorname{Bun}_G(X) \xrightarrow{\sim} [X, BG].$$

Theorem

There exists a space BG and a natural isomorphism of functors

$$\operatorname{Bun}_G(X) \xrightarrow{\sim} [X, BG].$$

Theorem

There exists a stack BG and a natural isomorphism of functors

$$\operatorname{Bun}_G(X) \xrightarrow{\sim} [X, BG].$$

Theorem

There exists a stack BG and a natural isomorphism of functors

 $\{G\text{-bundles } P \to X\} \xrightarrow{\sim} \operatorname{Hom}_{stacks}(X, BG).$

Theorem

There exists a stack BG and a natural isomorphism of functors

 $\{G\text{-bundles } P \to X\} \xrightarrow{\sim} \operatorname{Hom}_{stacks}(X, BG).$

$$P \longrightarrow EG$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow BG = [\bullet/G]$$

Example

Example

When $G = GL_n(k)$, principal $GL_n(k)$ -bundles \leftrightarrow rank n vector bundles.

Example

When $G = GL_n(k)$, principal $GL_n(k)$ -bundles \leftrightarrow rank n vector bundles. In particular, principal \mathbb{G}_m -bundles \leftrightarrow line bundles.

Example

When $G = GL_n(k)$, principal $GL_n(k)$ -bundles \leftrightarrow rank n vector bundles. In particular, principal \mathbb{G}_m -bundles \leftrightarrow line bundles.

Proposition

There is a bijection

$$(L,s) \longleftrightarrow [\mathbb{A}^1/\mathbb{G}_m](X) = \operatorname{Hom}(X, [\mathbb{A}^1/\mathbb{G}_m])$$

where $L \rightarrow X$ is a line bundle with section *s*.

Example

When $G = GL_n(k)$, principal $GL_n(k)$ -bundles \leftrightarrow rank *n* vector bundles. In particular, principal \mathbb{G}_m -bundles \leftrightarrow line bundles.

Proposition

There is a bijection

$$(L,s) \longleftrightarrow [\mathbb{A}^1/\mathbb{G}_m](X) = \operatorname{Hom}(X, [\mathbb{A}^1/\mathbb{G}_m])$$

where $L \rightarrow X$ is a line bundle with section *s*.

Here, $[\mathbb{A}^1/\mathbb{G}_m]$ is an "infinitesimal thickening" of the classifying stack $B\mathbb{G}_m = [\bullet/\mathbb{G}_m].$

Kummer Theory
Kummer Theory

A natural question is: for an algebraic variety (or scheme) X with a line bundle $L \to X$, does there exist another bundle $E \to X$ such that $E^{\otimes r} = L$?

Kummer Theory

A natural question is: for an algebraic variety (or scheme) X with a line bundle $L \to X$, does there exist another bundle $E \to X$ such that $E^{\otimes r} = L$?

This has a natural answer in terms of Kummer theory.

Recall that a Kummer extension is a field extension L/k which is Galois with cyclic Galois group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/r\mathbb{Z}$ for some $r \ge 1$. Recall that a Kummer extension is a field extension L/k which is Galois with cyclic Galois group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/r\mathbb{Z}$ for some $r \geq 1$. Explicitly, every Kummer extension is of the form

$$L = k[x]/(x^r - s) \quad \text{for } r \ge 1, s \in k^{\times}.$$

Recall that a Kummer extension is a field extension L/k which is Galois with cyclic Galois group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/r\mathbb{Z}$ for some $r \ge 1$. Explicitly, every Kummer extension is of the form

$$L = k[x]/(x^r - s) \quad \text{for } r \ge 1, s \in k^{\times}.$$

The rth universal Kummer stack is the cover of stacks

$$[\mathbb{A}^1/\mathbb{G}_m] \longrightarrow [\mathbb{A}^1/\mathbb{G}_m], \quad x \mapsto x^r$$

Recall that a Kummer extension is a field extension L/k which is Galois with cyclic Galois group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/r\mathbb{Z}$ for some $r \ge 1$. Explicitly, every Kummer extension is of the form

$$L = k[x]/(x^r - s) \quad \text{for } r \ge 1, s \in k^{\times}.$$

The rth universal Kummer stack is the cover of stacks

$$\begin{split} [\mathbb{A}^1/\mathbb{G}_m] &\longrightarrow [\mathbb{A}^1/\mathbb{G}_m], \quad x \mapsto x^r \\ & \cup \mathsf{I} & \cup \mathsf{I} \\ [\bullet/\mathbb{G}_m] &\longrightarrow [\bullet/\mathbb{G}_m] \end{split}$$

We can construct "rth roots" of line bundles:

Kummer Theory

We can construct "rth roots" of line bundles:

Definition (Cadman, '07)

For a stack X, a line bundle $L \to X$ with section s and $r \ge 1$, the **rth** root stack $\sqrt[r]{(L,s)/X}$ is the fibre product

$$\begin{array}{c} \sqrt{(L,s)/X} \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \\ \downarrow & \downarrow r \\ X \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \end{array}$$

where $X \to [\mathbb{A}^1/\mathbb{G}_m]$ is the morphism determined by (L, s) and "r" is the universal root stack.

Kummer Theory

We can construct "rth roots" of line bundles:

Definition (Cadman, '07)

For a stack X, a line bundle $L \to X$ with section s and $r \ge 1$, the rth root stack $\sqrt[r]{(L,s)/X}$ is the fibre product

$$\begin{array}{c} \sqrt{(L,s)/X} \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \\ \downarrow & \downarrow r \\ X \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \end{array}$$

where $X \to [\mathbb{A}^1/\mathbb{G}_m]$ is the morphism determined by (L, s) and "r" is the universal root stack.

This allows one to study quotients of schemes in characteristic $\boldsymbol{0}$ as stacky objects.

What to do when $\operatorname{char} k = p > 0$? Notice that $x \mapsto x^p$ is the Frobenius...

An Artin-Schreier extension of a characteristic p field is a field extension L/k which is Galois with group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/p\mathbb{Z}$.

An Artin-Schreier extension of a characteristic p field is a field extension L/k which is Galois with group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/p\mathbb{Z}$. Every A-S extension is of the form

$$L = k[x]/(x^p - x - a)$$
 for some $a \in k$

An Artin-Schreier extension of a characteristic p field is a field extension L/k which is Galois with group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/p\mathbb{Z}$. Every A-S extension is of the form

$$L = k[x]/(x^p - x - a)$$
 for some $a \in k$

A-S extensions are uniquely determined by their *ramification jump*, an integer m defined using the higher ramification filtration of Gal(L/k).

An Artin-Schreier extension of a characteristic p field is a field extension L/k which is Galois with group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/p\mathbb{Z}$. Every A-S extension is of the form

$$L = k[x]/(x^p - x - a)$$
 for some $a \in k$

A-S extensions are uniquely determined by their *ramification jump*, an integer m defined using the higher ramification filtration of Gal(L/k).

So to keep track of this additional arithmetic information, we need more structure than $[\mathbb{A}^1/\mathbb{G}_m] \approx \text{point} + \text{fuzz}.$

For $m \in \mathbb{Z}$, the "weighted projective line" is \mathbb{P}^1 with one stacky point of order m:

For $m \in \mathbb{Z}$, the "weighted projective line" is \mathbb{P}^1 with one stacky point of order m:

 $\mathbb{G}_a \frown \mathbb{P}(m,1)$ additively by $\lambda \cdot x = x + \lambda$ away from the stacky point.

For $m \in \mathbb{Z}$, the "weighted projective line" is \mathbb{P}^1 with one stacky point of order m:

$$\xleftarrow{\bullet} \mathbb{P}(m,1)$$
m

 $\mathbb{G}_a \frown \mathbb{P}(m, 1)$ additively by $\lambda \cdot x = x + \lambda$ away from the stacky point.

Definition

For $m \in \mathbb{Z}$, the **universal Artin-Schreier stack with jump m** is the cover of stacks

$$\mathbb{P}(m,1)/\mathbb{G}_a] \longrightarrow [\mathbb{P}(m,1)/\mathbb{G}_a]$$
$$[x,y] \longmapsto [x^p - xy^{m(p-1)}, y^p]$$

Proposition

Proposition

There is a bijective correspondence

$$(L, s, f) \longleftrightarrow \operatorname{Hom}(X, [\mathbb{P}(m, 1)/\mathbb{G}_a])$$

Proposition

There is a bijective correspondence

$$(L, s, f) \longleftrightarrow \operatorname{Hom}(X, [\mathbb{P}(m, 1)/\mathbb{G}_a])$$

where $L \to X$ is a line bundle with sections $s : X \to L$ and $f : X \to L^{\otimes m}$.

Proposition

There is a bijective correspondence

$$(L, s, f) \longleftrightarrow \operatorname{Hom}(X, [\mathbb{P}(m, 1)/\mathbb{G}_a])$$

where $L \to X$ is a line bundle with sections $s : X \to L$ and $f : X \to L^{\otimes m}$. Explicitly, $X \to [\mathbb{P}(m, 1)/\mathbb{G}_a]$ is $x \mapsto [f(x), s(x)]$.

Proposition

There is a bijective correspondence

$$(L, s, f) \longleftrightarrow \operatorname{Hom}(X, [\mathbb{P}(m, 1)/\mathbb{G}_a])$$

where $L \to X$ is a line bundle with sections $s : X \to L$ and $f : X \to L^{\otimes m}$. Explicitly, $X \to [\mathbb{P}(m, 1)/\mathbb{G}_a]$ is $x \mapsto [f(x), s(x)]$.

This allows us to construct "Artin-Schreier roots" of line bundles as follows.

Definition

Definition

For a stack X, a line bundle $L \to X$ and sections $s: X \to L, f: X \to L^{\otimes m}$, the **Artin-Schreier root stack** with jump m is the fibre product

$$p_m^{-1}((L,s,f)/X) \longrightarrow [\mathbb{P}(m,1)/\mathbb{G}_a]$$

$$\downarrow \qquad \qquad \downarrow \Psi_m$$

$$X \longrightarrow [\mathbb{P}(m,1)/\mathbb{G}_a]$$

where $X \to [\mathbb{P}(m, 1)/\mathbb{G}_a]$ is the morphism determined by (L, s, f) and Ψ_m is the universal Artin-Schreier stack with jump m.

Example

An affine Artin-Schreier curve is of the form

$$Y = \operatorname{Spec}(k(x)[y]/(y^p - y - f(x)))$$

where f(x) is a rational function of degree $m \in \mathbb{Z}, (m, p) = 1$.

Example

An affine Artin-Schreier curve is of the form

$$Y = \operatorname{Spec}(k(x)[y]/(y^p - y - f(x)))$$

where f(x) is a rational function of degree $m \in \mathbb{Z}, (m, p) = 1$. Then $Y \to \mathbb{A}^1$ is étale with group $\mathbb{Z}/p\mathbb{Z}$ and k(Y)/k(x) is an A-S extension with jump m.

Example

An affine Artin-Schreier curve is of the form

$$Y = \operatorname{Spec}(k(x)[y]/(y^p - y - f(x)))$$

where f(x) is a rational function of degree $m \in \mathbb{Z}, (m, p) = 1$. Then $Y \to \mathbb{A}^1$ is étale with group $\mathbb{Z}/p\mathbb{Z}$ and k(Y)/k(x) is an A-S extension with jump m.

For
$$X = \mathbb{A}^1$$
, $L = \mathcal{O}_X$, $s = x$ and $f = f(x)$, we have

$$\wp_m^{-1}((\mathcal{O}_X, x, f)/X) \cong [Y/(\mathbb{Z}/p\mathbb{Z})]$$

where $\mathbb{Z}/p\mathbb{Z}$ acts additively.

Example

An affine Artin-Schreier curve is of the form

$$Y = \operatorname{Spec}(k(x)[y]/(y^p - y - f(x)))$$

where f(x) is a rational function of degree $m \in \mathbb{Z}, (m, p) = 1$. Then $Y \to \mathbb{A}^1$ is étale with group $\mathbb{Z}/p\mathbb{Z}$ and k(Y)/k(x) is an A-S extension with jump m.

For $X = \mathbb{A}^1$, $L = \mathcal{O}_X$, s = x and f = f(x), we have

$$\wp_m^{-1}((\mathcal{O}_X, x, f)/X) \cong [Y/(\mathbb{Z}/p\mathbb{Z})]$$

where $\mathbb{Z}/p\mathbb{Z}$ acts additively. Similar for any $X = \operatorname{Spec} A$.

Stacky Curves

A **stacky curve** is a smooth, separated, connected, one-dimensional Deligne-Mumford stack \mathcal{X} over a field k.

A **stacky curve** is a smooth, separated, connected, one-dimensional Deligne-Mumford stack \mathcal{X} over a field k. (Think of \mathcal{X} as a smooth curve X with some finite groups attached to a finite number of points)

A **stacky curve** is a smooth, separated, connected, one-dimensional Deligne-Mumford stack \mathcal{X} over a field k. (Think of \mathcal{X} as a smooth curve X with some finite groups attached to a finite number of points)

Call \mathcal{X} tame if the orders of its stabilizers are prime to char *k*. Otherwise, \mathcal{X} is wild.

A **stacky curve** is a smooth, separated, connected, one-dimensional Deligne-Mumford stack \mathcal{X} over a field k. (Think of \mathcal{X} as a smooth curve X with some finite groups attached to a finite number of points)

Call \mathcal{X} tame if the orders of its stabilizers are prime to char *k*. Otherwise, \mathcal{X} is wild.

Define the **canonical ring** of \mathcal{X} to be

1

$$R(\mathcal{X}) = \bigoplus_{k=0}^{\infty} H^0(\mathcal{X}, \omega_{\mathcal{X}}^{\otimes k})$$

where $\omega_{\mathcal{X}}$ is the canonical sheaf on \mathcal{X} , defined in a similar way as that of a scheme.
$$R(\mathcal{X}) = \bigoplus_{k=0}^{\infty} H^0(\mathcal{X}, \omega_{\mathcal{X}}^{\otimes k})$$

When $\mathcal{X} = \mathfrak{h}/\Gamma_0(N)$ for a congruence subgroup $\Gamma_0(N)$, then $H^0(\mathcal{X}, \omega_{\mathcal{X}}^{\otimes k}) \cong S_{2k}(N)$, the space of weight 2k cusp forms of level N.

$$R(\mathcal{X}) = \bigoplus_{k=0}^{\infty} H^0(\mathcal{X}, \omega_{\mathcal{X}}^{\otimes k})$$

When $\mathcal{X} = \mathfrak{h}/\Gamma_0(N)$ for a congruence subgroup $\Gamma_0(N)$, then $H^0(\mathcal{X}, \omega_{\mathcal{X}}^{\otimes k}) \cong \mathcal{S}_{2k}(N)$, the space of weight 2k cusp forms of level N.

Voight and Zureick-Brown: combinatorial description of $R(\mathcal{X})$ when \mathcal{X} is tame, giving dimension formulas for spaces of modular forms in many cases.

$$R(\mathcal{X}) = \bigoplus_{k=0}^{\infty} H^0(\mathcal{X}, \omega_{\mathcal{X}}^{\otimes k})$$

When $\mathcal{X} = \mathfrak{h}/\Gamma_0(N)$ for a congruence subgroup $\Gamma_0(N)$, then $H^0(\mathcal{X}, \omega_{\mathcal{X}}^{\otimes k}) \cong \mathcal{S}_{2k}(N)$, the space of weight 2k cusp forms of level N.

Voight and Zureick-Brown: combinatorial description of $R(\mathcal{X})$ when \mathcal{X} is tame, giving dimension formulas for spaces of modular forms in many cases.

Their proof uses: every tame stacky curve over an algebraically closed field is a root stack.

Introduction	Moduli Problems	Kummer Theory	Artin-Schreier Theory	Stacky Curves
Stacky Curv	ves			

To extend this to wild stacky curves, we can use Artin-Schreier stacks. (Work in progress.)

To extend this to wild stacky curves, we can use Artin-Schreier stacks. (Work in progress.)

Example

One would like to obtain dimension formulas for the spaces of modular forms for the congruence subgroups $\Gamma_0(p)$ and $\Gamma_1(p)$.

To extend this to wild stacky curves, we can use Artin-Schreier stacks. (Work in progress.)

Example

One would like to obtain dimension formulas for the spaces of modular forms for the congruence subgroups $\Gamma_0(p)$ and $\Gamma_1(p)$.

Question

Can $\wp_m^{-1}((L,s,f)/X)$ be generalized further to handle cyclic Galois groups of higher order? Nonabelian groups? (Artin-Schreier-Witt theory)

To extend this to wild stacky curves, we can use Artin-Schreier stacks. (Work in progress.)

Example

One would like to obtain dimension formulas for the spaces of modular forms for the congruence subgroups $\Gamma_0(p)$ and $\Gamma_1(p)$.

Question

Can $\wp_m^{-1}((L,s,f)/X)$ be generalized further to handle cyclic Galois groups of higher order? Nonabelian groups? (Artin-Schreier-Witt theory)

For example, there exist stacky quotients of $X_0(p)$ with nonabelian stabilizers.

Introduction Moduli Problems Kummer Theory A

Artin-Schreier Theory

Stacky Curves

Thank you!

References

- Cadman. Using stacks to impose tangency conditions on curves. *American Journal of Mathematics*, vol. 129, no. 2 (Apr. 2007), pp. 405-427.
- Voight, Zureick-Brown. The canonical ring of a stacky curve. (preprint)