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Goal:

Describe Artin-Schreier covers of curves using the language of
stacks.

Natural application to moduli problems in characteristic p > 0 which
are not accessible by strictly scheme-theoretic considerations.

Moduli problems are ‘the right framework’ to study modular forms
— at least, for an algebraic geometer like me :)
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Motivation

Modular forms have a natural interpretation as sections of certain line
bundles over a moduli space — hence the name ‘modular’ form.

Here’s an easy example to keep in mind:

Example

LetT' = PSLy(Z) be the modular group, which acts on the upper half
plane hh = {z € C : im(z) > 0} by fractional linear transformations.
The quotient Y = /T is an affine curve whose projective closure

X = P{. as Riemann surfaces.

Modular forms of weight & <— sections of the line bundle w$*
+— T-invariant sections of wZ*

where f(z) € M. <= f(z)dz* is I-invariant.
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(topological/algebraic).

Then Bung (X) denotes the category of isomorphism classes of
principal G-bundles P — X.

There exists a space BG and a natural isomorphism of functors

Bung(X) = [X, BG).

BG is called a classifying space for principal G-bundles.
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There exists a stack BG and a natural isomorphism of functors

{G-bundles P — X} = Homgers(X, BG).

That is, there exist a universal G-bundle EG — BG such that

principal bundles (up-to-isomerphism) P — X correspond bijectively
to classifying maps f : X — BG (up-to-hemotopy):

P

EG

BG = [¢/G]
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When G = GL,(k), principal GL,,(k)-bundles «+ rank n vector
bundles. In particular, principal G,,-bundles « line bundles.

Proposition

There is a bijection

(L,s) «— [A'/G,,](X) = Hom(X, [A'/G,,])

where L — X is a line bundle with section s.

Here, [A!/G,,] is an “infinitesimal thickening” of the classifying stack
BG,, = [¢/Gy,].
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A natural question is: for an algebraic variety (or scheme) X with a
line bundle L — X, does there exist another bundle £ — X such that
E®" = L7

This has a natural answer in terms of Kummer theory.
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Recall that a Kummer extension is a field extension L/k which is
Galois with cyclic Galois group Gal(L/k) = Z/rZ for some r > 1.
Explicitly, every Kummer extension is of the form

L =k[z]/(z" —s) forr>1,s€k”.
The rth universal Kummer stack is the cover of stacks

[A'/G,,] — [AY/G,,], x> 2"
Ul Ul
[0/Gm] — [0/Gm]
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We can construct “rth roots” of line bundles:

Definition (Cadman, ‘07)

For a stack X, a line bundle L — X with section s and » > 1, the rth
root stack {/(L, s)/X is the fibre product

YT, 5)/X — [A'/Gn]
| Ir

X A/ Gy]

where X — [Al/G,,] is the morphism determined by (L, s) and “r” is
the universal root stack.

This allows one to study quotients of schemes in characteristic 0 as
stacky objects.
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Artin-Schreier Theory

What to do when char &k = p > 0? Notice that x — z? is the
Frobenius... does not give an étale cover.

An Artin-Schreier extension of a characteristic p field is a field
extension L/k which is Galois with group Gal(L/k) = Z/pZ. Every
A-S extension is of the form

L =k[z]/(2? —x —a) forsomea €k

A-S extensions are uniquely determined by their ramification jump, an
integer m defined using the higher ramification filtration of Gal(L/k).

So to keep track of this additional arithmetic information, we need
more structure than [A!/G,,] ~ point + fuzz.
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For m € Z, the “weighted projective ling” is P! with one stacky point of
order m:

. P(m,1)

Go~—>P(m, 1) additively by X - © = « + X\ away from the stacky point.

Definition

For m € Z, the universal Artin-Schreier stack with jump m is the
cover of stacks

[P(m,1)/Ga] — [P(m, 1)/Gq]

[z,y] — [2P — 2y™ P~ 4P|
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Artin-Schreier Theory

Proposition
There is a bijective correspondence

(L, s, f) = Hom(X, [P(m,1)/Ga])

where L — X is a line bundle with sections s : X — L and
f: X — L®™. Explicitly, X — [P(m,1)/G,] is x — [f(z), s(z)]-

This allows us to construct “Artin-Schreier roots” of line bundles as
follows.
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For a stack X, a line bundle L — X and sections

s: X = L, f: X — L®m, the Artin-Schreier root stack with jump m
is the fibre product

om' (L, 5, £)/X) — [P(m,1)/G,]

! L

X ——— [P(m,1)/G,]

where X — [P(m, 1)/G,] is the morphism determined by (L, s, f) and
v, is the universal Artin-Schreier stack with jump m.
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Artin-Schreier Theory

An affine Artin-Schreier curve is of the form

Y = Spec(k(x)[yl/(y* —y — f(2)))

where f(z) is a rational function of degree m € Z, (m,p) = 1. Then
Y — Al is étale with group Z/pZ and k(Y)/k(x) is an A-S extension
with jump m.

For X = A', L = Ox,s=xand f = f(z), we have

om (Ox, 2, f)/X) 2 [Y/(Z/pL)]

where Z/pZ acts additively. Similar for any X = Spec A.
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Stacky Curves

A stacky curve is a smooth, separated, connected, one-dimensional
Deligne-Mumford stack X over a field k. (Think of X as a smooth
curve X with some finite groups attached to a finite number of points)

. . X
737 Dy

Call X tame if the orders of its stabilizers are prime to char k.
Otherwise, X is wild.

Define the canonical ring of X to be

o0

R(X) = D H (X, wi")
k=0

where wy is the canonical sheaf on X, defined in a similar way as
that of a scheme.
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Stacky Curves

R(X) = P HO(X,0F")
k=0
When X = 1/To(NN) for a congruence subgroup I'g(N), then
HO(X,w$F) = Sai(N), the space of weight 2k cusp forms of level N.

Voight and Zureick-Brown: combinatorial description of R(X) when X
is tame, giving dimension formulas for spaces of modular forms in
many cases.

Their proof uses: every tame stacky curve over an algebraically
closed field is a root stack.
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Stacky Curves

To extend this to wild stacky curves, we can use Artin-Schreier
stacks. (Work in progress.)

One would like to obtain dimension formulas for the spaces of
modular forms for the congruence subgroups I'y(p) and I’y (p).

Can p,.'((L,s, f)/X) be generalized further to handle cyclic Galois
groups of higher order? Nonabelian groups? (Artin-Schreier-Witt
theory)

For example, there exist stacky quotients of X, (p) with nonabelian
stabilizers.
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Thank you!
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