Fundamental Groups in Algebra and Geometry

Andrew J. Kobin

ak5ah@virginia.edu

3 June, 2017

The diagram $\int_{X}^{Y} G$ might have a different meaning for each person in the room. For example, it might represent:

The diagram $\int_{X}^{Y} G$ might have a different meaning for each person in the room. For example, it might represent:

• A covering space, with G the group of deck transformations

The diagram $\int_{X}^{Y} G$ might have a different meaning for each person in the room. For example, it might represent:

- A covering space, with G the group of deck transformations
- A field extension, with G the Galois group

The diagram $\begin{array}{c} Y \\ \downarrow G \\ X \end{array}$ might have a different meaning for each person in the room. For example, it might represent:

- A covering space, with G the group of deck transformations
- A field extension, with G the Galois group
- A morphism of varieties/schemes, with *G* the Galois group of the corresponding field extension

The diagram $\begin{array}{c} Y \\ \downarrow G \\ X \end{array}$ might have a different meaning for each person in the room. For example, it might represent:

- A covering space, with G the group of deck transformations
- A field extension, with G the Galois group
- A morphism of varieties/schemes, with *G* the Galois group of the corresponding field extension
- An extension of *differential fields*, i.e. fields with a derivation, with *G* some Lie group acting on the extension (this is the jumping-off point for *differential Galois theory*)

The diagram $\int_{X}^{Y} G$ might have a different meaning for each person in the room. For example, it might represent:

- A covering space, with G the group of deck transformations
- A field extension, with G the Galois group
- A morphism of varieties/schemes, with *G* the Galois group of the corresponding field extension
- An extension of *differential fields*, i.e. fields with a derivation, with *G* some Lie group acting on the extension (this is the jumping-off point for *differential Galois theory*)

Definition

Let *X* be a "nice" space. A **cover** of *X* is a map $p: Y \to X$ that is a local homeomorphism.

Definition

Let *X* be a "nice" space. A **cover** of *X* is a map $p: Y \to X$ that is a local homeomorphism.

In algebraic topology, we classify equivalence classes of these covers by studying the category Cov_X :

Definition

Let *X* be a "nice" space. A **cover** of *X* is a map $p: Y \to X$ that is a local homeomorphism.

In algebraic topology, we classify equivalence classes of these covers by studying the category Cov_X :

• objects: covers $Y \xrightarrow{p} X$

Definition

Let *X* be a "nice" space. A **cover** of *X* is a map $p: Y \to X$ that is a local homeomorphism.

In algebraic topology, we classify equivalence classes of these covers by studying the category Cov_X :

- objects: covers $Y \xrightarrow{p} X$
- morphisms: $Hom_X(Y, Z)$ is maps commuting with covers:

One defines a **universal cover** $\widetilde{X} \to X$ to be the solution to the universal mapping problem in $Hom_X(-,-)$

One defines a **universal cover** $\widetilde{X} \to X$ to be the solution to the universal mapping problem in $\operatorname{Hom}_X(-,-)$ and then the **fundamental group** of X can be defined:

One defines a **universal cover** $\widetilde{X} \to X$ to be the solution to the universal mapping problem in $\operatorname{Hom}_X(-,-)$ and then the **fundamental group** of X can be defined:

 $\pi_1^{top}(X) := \operatorname{Aut}_X(\widetilde{X}).$

One defines a **universal cover** $\widetilde{X} \to X$ to be the solution to the universal mapping problem in $\operatorname{Hom}_X(-,-)$ and then the **fundamental group** of X can be defined:

$$\pi_1^{top}(X) := \operatorname{Aut}_X(\widetilde{X}).$$

$$\begin{array}{c} X \\ \downarrow \pi_1^{top}(X) \\ X \end{array}$$

One defines a **universal cover** $\widetilde{X} \to X$ to be the solution to the universal mapping problem in $\operatorname{Hom}_X(-,-)$ and then the **fundamental group** of X can be defined:

$$\pi_1^{top}(X) := \operatorname{Aut}_X(\widetilde{X}). \qquad \begin{array}{c} \widetilde{X} \\ \downarrow \pi_1^{top}(X) \\ X \end{array}$$

(Alternatively, you can define π_1^{top} using loops, but loops won't make sense in every category.)

One defines a **universal cover** $\widetilde{X} \to X$ to be the solution to the universal mapping problem in $\operatorname{Hom}_X(-,-)$ and then the **fundamental group** of *X* can be defined:

$$\pi_1^{top}(X) := \operatorname{Aut}_X(\widetilde{X}). \qquad \begin{array}{c} \widetilde{X} \\ \downarrow \pi_1^{top}(X) \\ X \end{array}$$

(Alternatively, you can define π_1^{top} using loops, but loops won't make sense in every category.)

Unfortunately, \widetilde{X} does not exist in algebraic categories, so we adopt a different perspective of $\pi_1^{top}(X).$

Definition

For a point $x \in X$, the **fibre functor** over x is

]

$$\operatorname{Fib}_x : \operatorname{Cov}_X \longrightarrow \operatorname{Sets}$$

$$(Y \xrightarrow{p} X) \longrightarrow p^{-1}(x).$$

Definition

For a point $x \in X$, the **fibre functor** over x is

$$\operatorname{Fib}_{x} : \operatorname{Cov}_{X} \longrightarrow \operatorname{Sets}$$
$$(Y \xrightarrow{p} X) \longrightarrow p^{-1}(x).$$

By the universal property of \widetilde{X} , Fib_x is a *representable functor*.

$$\operatorname{Fib}_x(-) \cong \operatorname{Hom}_X(\widetilde{X}_{\tilde{x}}, -).$$

Definition

For a point $x \in X$, the **fibre functor** over x is

$$\operatorname{Fib}_{x} : \operatorname{Cov}_{X} \longrightarrow \operatorname{Sets}$$
$$(Y \xrightarrow{p} X) \longrightarrow p^{-1}(x).$$

By the universal property of \widetilde{X} , Fib_x is a *representable functor*.

$$\operatorname{Fib}_x(-) \cong \operatorname{Hom}_X(\widetilde{X}_{\tilde{x}}, -).$$

Theorem (Monodromy)

There is an isomorphism $\pi_1^{top}(X, x) \xrightarrow{\sim} \operatorname{Aut}(\operatorname{Fib}_x)$.

Definition

For a point $x \in X$, the **fibre functor** over x is

$$\operatorname{Fib}_{x} : \operatorname{Cov}_{X} \longrightarrow \operatorname{Sets}$$
$$(Y \xrightarrow{p} X) \longrightarrow p^{-1}(x).$$

By the universal property of \widetilde{X} , Fib_x is a *representable functor*.

$$\operatorname{Fib}_x(-) \cong \operatorname{Hom}_X(\widetilde{X}_{\tilde{x}}, -).$$

Theorem (Monodromy)

There is an isomorphism $\pi_1^{top}(X, x) \xrightarrow{\sim} \operatorname{Aut}(\operatorname{Fib}_x)$.

 $Aut(Fib_x)$ will be a good candidate for defining fundamental groups in other settings.

The diagram $\bigvee_{X}^{Y} G$ might have a different meaning for each person in the room. For example, it might represent:

- A covering space, with G the group of deck transformations
- A field extension, with *G* the Galois group
- A morphism of varieties/schemes, with *G* the Galois group of the corresponding field extension
- An extension of *differential fields*, i.e. fields with a derivation, with *G* some Lie group acting on the extension (this is the jumping-off point for *differential Galois theory*)

Fix a field k, an algebraic closure \bar{k} and a separable closure $k\subseteq k^{sep}\subseteq \bar{k}.$

Fix a field k, an algebraic closure \bar{k} and a separable closure $k \subseteq k^{sep} \subseteq \bar{k}$. Set $G_k = \text{Gal}(k^{sep}/k)$, called the *absolute Galois group*.

Fix a field k, an algebraic closure \bar{k} and a separable closure $k \subseteq k^{sep} \subseteq \bar{k}$. Set $G_k = \operatorname{Gal}(k^{sep}/k)$, called the *absolute Galois group*.

Theorem

For any finite, separable extension of fields L/k, $\operatorname{Hom}_k(L, k^{sep})$ is a finite, continuous, transitive G_k -set.

Fix a field k, an algebraic closure \bar{k} and a separable closure $k \subseteq k^{sep} \subseteq \bar{k}$. Set $G_k = \operatorname{Gal}(k^{sep}/k)$, called the *absolute Galois group*.

Theorem

For any finite, separable extension of fields L/k, $\operatorname{Hom}_k(L, k^{sep})$ is a finite, continuous, transitive G_k -set. Moreover, there is an anti-equivalence of categories

{finite, separable L/k} $\xrightarrow{\sim}$ {finite, cts., transitive G_k -sets} $L/k \longmapsto \operatorname{Hom}_k(L, k^{sep}).$

Theorem

For any finite, separable extension of fields L/k, $\operatorname{Hom}_k(L, k^{sep})$ is a finite, continuous, transitive G_k -set. Moreover, there is an anti-equivalence of categories

{finite, separable L/k} $\xrightarrow{\sim}$ {finite, cts., transitive G_k -sets} $L/k \longmapsto \operatorname{Hom}_k(L, k^{sep}).$

$$G_k \left[egin{array}{c|c} ar{k} \\ egin{array}{c|c} & L \\ egin{array}{c|c}$$

The diagram $\int_{X}^{Y} G$ might have a different meaning for each person in the room. For example, it might represent:

- A covering space, with G the group of deck transformations
- A field extension, with G the Galois group
- A morphism of varieties/schemes, with *G* the Galois group of the corresponding field extension
- An extension of *differential fields*, i.e. fields with a derivation, with *G* some Lie group acting on the extension (this is the jumping-off point for *differential Galois theory*)

Schemes

Schemes

Let (X, \mathcal{O}_X) be a scheme:

Schem<u>es</u>

Let (X, \mathcal{O}_X) be a scheme:

• X is a topological space

Schemes

Let (X, \mathcal{O}_X) be a scheme:

- X is a topological space
- \mathcal{O}_X is a sheaf of rings on X
Let (X, \mathcal{O}_X) be a scheme:

- X is a topological space
- \mathcal{O}_X is a sheaf of rings on X
- Each stalk is a local ring: $\mathcal{O}_{X,x} \cong A_{\mathfrak{p}}$ for some ring A and prime ideal \mathfrak{p}

Let (X, \mathcal{O}_X) be a scheme:

- X is a topological space
- \mathcal{O}_X is a sheaf of rings on X
- Each stalk is a local ring: $\mathcal{O}_{X,x} \cong A_{\mathfrak{p}}$ for some ring A and prime ideal \mathfrak{p}
- There is an open covering $X = \bigcup X_i$ such that $X_i \cong \operatorname{Spec} A_i$ for rings A_i

Let (X, \mathcal{O}_X) be a scheme:

- X is a topological space
- \mathcal{O}_X is a sheaf of rings on X
- Each stalk is a local ring: $\mathcal{O}_{X,x} \cong A_{\mathfrak{p}}$ for some ring A and prime ideal \mathfrak{p}
- There is an open covering $X = \bigcup X_i$ such that $X_i \cong \operatorname{Spec} A_i$ for rings A_i

Let (X, \mathcal{O}_X) be a scheme:

- X is a topological space
- \mathcal{O}_X is a sheaf of rings on X
- Each stalk is a local ring: $\mathcal{O}_{X,x} \cong A_{\mathfrak{p}}$ for some ring A and prime ideal \mathfrak{p}
- There is an open covering $X = \bigcup X_i$ such that $X_i \cong \operatorname{Spec} A_i$ for rings A_i

Definition

A morphism of schemes is a pair $(f, f^{\#}) : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ consisting of:

- (a) A map between spaces $f: Y \to X$
- (b) A morphism of sheaves f[#] : O_Y → f_{*}O_X that preserves local ring structure.

Definition

A morphism of schemes $p: Y \to X$ is **étale** at $y \in Y$ if the induced morphism on local rings $p^{\#} : \mathcal{O}_{X,p(y)} \to \mathcal{O}_{Y,y}$ satisfies:

Definition

A morphism of schemes $p: Y \to X$ is **étale** at $y \in Y$ if the induced morphism on local rings $p^{\#} : \mathcal{O}_{X,p(y)} \to \mathcal{O}_{Y,y}$ satisfies:

(a) (Flat) The functor $M \mapsto M \otimes_{\mathcal{O}_{X,p(y)}} \mathcal{O}_{Y,y}$ is exact

Definition

A morphism of schemes $p: Y \to X$ is **étale** at $y \in Y$ if the induced morphism on local rings $p^{\#} : \mathcal{O}_{X,p(y)} \to \mathcal{O}_{Y,y}$ satisfies:

- (a) (Flat) The functor $M \mapsto M \otimes_{\mathcal{O}_{X,p(y)}} \mathcal{O}_{Y,y}$ is exact
- (b) (Unramified) The extension of residue fields $(\mathcal{O}_{Y,y}/p^{\#}(\mathfrak{m}_{p(y)})\mathcal{O}_{Y,y})$ is finite and separable.

Definition

A morphism of schemes $p: Y \to X$ is **étale** at $y \in Y$ if the induced morphism on local rings $p^{\#}: \mathcal{O}_{X,p(y)} \to \mathcal{O}_{Y,y}$ satisfies:

- (a) (Flat) The functor $M \mapsto M \otimes_{\mathcal{O}_{X,p(y)}} \mathcal{O}_{Y,y}$ is exact
- (b) (Unramified) The extension of residue fields $(\mathcal{O}_{Y,y}/p^{\#}(\mathfrak{m}_{p(y)})\mathcal{O}_{Y,y})$ is finite and separable.

If p is étale at every $y \in Y$, we call $p: Y \to X$ an étale cover of X.

Definition

A morphism of schemes $p: Y \to X$ is **étale** at $y \in Y$ if the induced morphism on local rings $p^{\#}: \mathcal{O}_{X,p(y)} \to \mathcal{O}_{Y,y}$ satisfies:

- (a) (Flat) The functor $M \mapsto M \otimes_{\mathcal{O}_{X,p(y)}} \mathcal{O}_{Y,y}$ is exact
- (b) (Unramified) The extension of residue fields $(\mathcal{O}_{Y,y}/p^{\#}(\mathfrak{m}_{p(y)})\mathcal{O}_{Y,y})$ is finite and separable.

If p is étale at every $y \in Y$, we call $p: Y \to X$ an étale cover of X.

Let Fét_{*X*} be the category consisting of finite étale covers $Y \xrightarrow{p} X$, together with morphisms of covers:

Fix a "geometric point" $x : \operatorname{Spec} k \to X$ where k is a field.

Fix a "geometric point" $x : \operatorname{Spec} k \to X$ where k is a field. Then for any morphism $f : Y \to X$, one can define the fibre $\operatorname{Fib}_x(Y)$ via a pullback or fibred product:

Fix a "geometric point" $x : \operatorname{Spec} k \to X$ where k is a field. Then for any morphism $f : Y \to X$, one can define the fibre $\operatorname{Fib}_x(Y)$ via a pullback or fibred product:

This defines a *fibre functor* over x:

$$\begin{aligned} \operatorname{Fib}_{x} &: \operatorname{\mathsf{F\acute{e}t}}_{X} \longrightarrow \operatorname{\mathtt{Sets}} \\ & (Y \xrightarrow{p} X) \longmapsto \operatorname{Fib}_{x}(Y) = \operatorname{Spec} k \times_{X} Y. \end{aligned}$$

Fix a "geometric point" $x : \operatorname{Spec} k \to X$ where k is a field. Then for any morphism $f : Y \to X$, one can define the fibre $\operatorname{Fib}_x(Y)$ via a pullback or fibred product:

This defines a *fibre functor* over *x*:

$$Fib_x : \mathsf{F\acute{e}t}_X \longrightarrow \mathtt{Sets}$$
$$(Y \xrightarrow{p} X) \longmapsto Fib_x(Y) = \operatorname{Spec} k \times_X Y.$$

(Note that $\operatorname{Spec} k$ is, as a space, just a point. So this jives with the topological case.)

The étale fundamental group

The étale fundamental group

Definition

The **étale fundamental group** of a scheme *X* at a geometric point $x : \operatorname{Spec} k \to X$ is defined as the automorphism group of the fibre functor over *x*:

 $\pi_1^{\text{\'et}}(X, x) := \text{Aut}(\text{Fib}_x).$

The étale fundamental group

Definition

The **étale fundamental group** of a scheme *X* at a geometric point $x : \operatorname{Spec} k \to X$ is defined as the automorphism group of the fibre functor over *x*:

 $\pi_1^{\text{\'et}}(X, x) := \text{Aut}(\text{Fib}_x).$

Theorem (Grothendieck)

For a connected scheme X and a geometric point $x : \operatorname{Spec} k \to X$,

- (1) $\pi_1^{\text{ét}}(X, x)$ is a profinite group which acts continuously on each fibre $\text{Fib}_x(Y)$ for $Y \to X$ any cover.
- (2) Fib_x : Fét_X \rightarrow {continuous, finite, left $\pi_1^{\text{ét}}(X, x)$ -sets} is an equivalence of categories.

Let $X = \operatorname{Spec} k$, which is just a point.

Let $X = \operatorname{Spec} k$, which is just a point. A *finite étale* k*-algebra* is a product $A = L_1 \times \cdots \times L_r$ of finite, separable field extensions L_i/k .

Let $X = \operatorname{Spec} k$, which is just a point. A *finite étale* k-algebra is a product $A = L_1 \times \cdots \times L_r$ of finite, separable field extensions L_i/k . Then

$$\begin{cases} \text{finite étale covers} \\ Y \to \operatorname{Spec} k \end{cases} \longleftrightarrow \{ \text{finite étale } k\text{-algebras} \} \end{cases}$$

and $\pi_1^{\text{ét}}(\operatorname{Spec} k) \cong G_k = \operatorname{Gal}(k^{sep}/k).$

Let $X = \operatorname{Spec} k$, which is just a point. A *finite étale* k-algebra is a product $A = L_1 \times \cdots \times L_r$ of finite, separable field extensions L_i/k .

Then

$$\begin{cases} \mathsf{finite \ \acute{e}tale \ covers} \\ Y \to \operatorname{Spec} k \end{cases} \longleftrightarrow \{ \mathsf{finite \ \acute{e}tale \ }k\text{-algebras} \}$$

and $\pi_1^{\text{ét}}(\operatorname{Spec} k) \cong G_k = \operatorname{Gal}(k^{sep}/k).$

(You should think of $\operatorname{Spec} L$ for finite, separable extensions L/k as the connected covers of $\operatorname{Spec} k$.)

Let X be a curve over a field k, that is, a k-scheme of dimension 1 (as a topological space).

Let *X* be a curve over a field *k*, that is, a *k*-scheme of dimension 1 (as a topological space). Let k(X) be the function field of *X*.

Let *X* be a curve over a field *k*, that is, a *k*-scheme of dimension 1 (as a topological space). Let k(X) be the function field of *X*.

Fact: $\operatorname{tr} \operatorname{deg}_k k(X) = 1$.

Let *X* be a curve over a field *k*, that is, a *k*-scheme of dimension 1 (as a topological space). Let k(X) be the function field of *X*.

Fact: $\operatorname{tr} \operatorname{deg}_k k(X) = 1$.

Proposition

There is an equivalence of categories

 $\begin{cases} \text{finite morphisms of curves} \\ Y \to X \end{cases} \xrightarrow{\sim} \begin{cases} \text{finitely generated field extensions} \\ L/k(X), \operatorname{tr} \operatorname{deg}_k L = 1 \end{cases}$

Let *X* be a curve over a field *k*, that is, a *k*-scheme of dimension 1 (as a topological space). Let k(X) be the function field of *X*.

Fact: $\operatorname{tr} \operatorname{deg}_k k(X) = 1$.

Proposition

There is an equivalence of categories

 $\begin{cases} \text{finite morphisms of curves} \\ Y \to X \end{cases} \xrightarrow{\sim} \begin{cases} \text{finitely generated field extensions} \\ L/k(X), \operatorname{tr} \operatorname{deg}_k L = 1 \end{cases}$

$$\begin{array}{ccc} Y & & k(Y) \\ \downarrow & & & \\ X & & k(X) \end{array} \end{bmatrix} \operatorname{Gal}(k(Y)/k(X))$$

Theorem

Let $k(X)_{ur}$ be the union of all field extensions L/k(X) for L corresponding to a finite étale cover $Y \to X$. Then

 $\pi_1^{\text{\'et}}(X) \cong \operatorname{Gal}(k(X)_{ur}/k(X)).$

Theorem

Let $k(X)_{ur}$ be the union of all field extensions L/k(X) for L corresponding to a finite étale cover $Y \to X$. Then

 $\pi_1^{\text{\'et}}(X) \cong \operatorname{Gal}(k(X)_{ur}/k(X)).$

Punchline: Galois groups are fundamental groups!

Theorem

Let $k(X)_{ur}$ be the union of all field extensions L/k(X) for L corresponding to a finite étale cover $Y \to X$. Then

 $\pi_1^{\text{\'et}}(X) \cong \operatorname{Gal}(k(X)_{ur}/k(X)).$

Punchline: Galois groups are fundamental groups!

When $k = \mathbb{C}$, the rational points $X(\mathbb{C})$ carry the structure of a Riemann surface, and in fact we have:

Theorem

Let $k(X)_{ur}$ be the union of all field extensions L/k(X) for L corresponding to a finite étale cover $Y \to X$. Then

 $\pi_1^{\text{\'et}}(X) \cong \operatorname{Gal}(k(X)_{ur}/k(X)).$

Punchline: Galois groups are fundamental groups!

When $k = \mathbb{C}$, the rational points $X(\mathbb{C})$ carry the structure of a Riemann surface, and in fact we have:

Proposition

Let X/\mathbb{C} be a curve. Then the following are (anti-)equivalent:

- (a) finite morphisms of curves $Y \to X$
- (b) finite extensions L/k(X) where tr deg_k L = 1
- (c) proper holomorphic maps of Riemann surfaces $Y(\mathbb{C}) \to X(\mathbb{C})$

Theorem (Riemann Existence Theorem)

Let X/\mathbb{C} be a curve and let

$$\pi_1^{top}(X(\mathbb{C})) = \left\langle x_1, y_1, \dots, x_g, y_g, \gamma_1, \dots, \gamma_n \middle| \prod_{i=1}^g [x_i, y_i] \prod_{j=1}^n \gamma_j = 1 \right\rangle$$

be the topological fundamental group of the underlying Riemann surface (g is the genus and n is the number of punctures). Then the étale fundamental group of X is the profinite completion of this group:

$$\pi_1^{\text{\'et}}(X) \cong \widehat{\pi_1^{top}(X(\mathbb{C}))}.$$

Theorem (Riemann Existence Theorem)

$$\pi_1^{\text{\'et}}(X) \cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$$

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X) \cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example (\mathbb{P}^1)

 $X=\mathbb{P}^1=\mathbb{C}\cup\{\infty\},$ the complex projective line aka the Riemann sphere

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example (\mathbb{P}^1)

 $X=\mathbb{P}^1=\mathbb{C}\cup\{\infty\},$ the complex projective line aka the Riemann sphere

Any proper holomorphic map $Y \to \mathbb{P}^1$ is trivial

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example (\mathbb{P}^1)

 $X = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\},$ the complex projective line aka the Riemann sphere

Any proper holomorphic map $Y \to \mathbb{P}^1$ is trivial $\implies \pi_1^{top}(X) = \{1\}$
Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example (\mathbb{P}^1)

 $X = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\},$ the complex projective line aka the Riemann sphere

Any proper holomorphic map $Y \to \mathbb{P}^1$ is trivial $\implies \pi_1^{top}(X) = \{1\}$ $\implies \pi_1^{\text{\'et}}(X) = \{1\}$

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example (\mathbb{P}^1)

 $X=\mathbb{P}^1=\mathbb{C}\cup\{\infty\},$ the complex projective line aka the Riemann sphere

Any proper holomorphic map $Y \to \mathbb{P}^1$ is trivial $\implies \pi_1^{top}(X) = \{1\}$ $\implies \pi_1^{\text{\'et}}(X) = \{1\} \implies$ any étale cover $Y \to \mathbb{P}^1$ is an isomorphism.

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X) \cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example ($\mathbb{P}^1 \smallsetminus \{0, \infty\}$)

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X) \cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example ($\mathbb{P}^1 \smallsetminus \{0, \infty\}$)

 $X = \mathbb{P}^1 \smallsetminus \{0, \infty\} = \mathbb{C} \smallsetminus \{0\}$, the punctured complex plane

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X) \cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example ($\mathbb{P}^1 \smallsetminus \{0, \infty\}$)

 $X = \mathbb{P}^1 \smallsetminus \{0, \infty\} = \mathbb{C} \smallsetminus \{0\}$, the punctured complex plane

Here $\pi_1^{top}(X) = \mathbb{Z}$ so by the theorem, $\pi_1^{\text{\'et}}(X) \cong \widehat{\mathbb{Z}}$.

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X) \cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example ($\mathbb{P}^1 \setminus \{0,\infty\}$)

 $X=\mathbb{P}^1\smallsetminus\{0,\infty\}=\mathbb{C}\smallsetminus\{0\},$ the punctured complex plane

Here $\pi_1^{top}(X) = \mathbb{Z}$ so by the theorem, $\pi_1^{\text{\'et}}(X) \cong \widehat{\mathbb{Z}}$.

For every $n \in \mathbb{Z}$, there is a finite, degree n cover $X_n \to X$ corresponding to the holomorphic map

$$\mathbb{C} \longrightarrow \mathbb{C} \smallsetminus \{0\}$$

$$z \longmapsto z^n.$$

Theorem (Riemann Existence Theorem)

$$\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$$

Example $(\mathbb{P}^1 \setminus \{0, 1, \infty\})$

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example ($\mathbb{P}^1 \smallsetminus \{0, 1, \infty\}$)

 $X=\mathbb{P}^1\smallsetminus\{0,1,\infty\}=\mathbb{C}\smallsetminus\{0,1\},$ the twice-punctured complex plane

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example $(\mathbb{P}^1 \setminus \{0, 1, \infty\})$

 $X=\mathbb{P}^1\smallsetminus\{0,1,\infty\}=\mathbb{C}\smallsetminus\{0,1\},$ the twice-punctured complex plane

By the theorem, $\pi_1^{\text{\'et}}(X)$ is free profinite on two generators.

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example ($\mathbb{P}^1 \smallsetminus \{0, 1, \infty\}$)

 $X = \mathbb{P}^1 \smallsetminus \{0, 1, \infty\} = \mathbb{C} \smallsetminus \{0, 1\}$, the twice-punctured complex plane

By the theorem, $\pi_1^{\text{ét}}(X)$ is free profinite on two generators.

Fact: Every finite simple group can be generated by two elements.

Theorem (Riemann Existence Theorem)

 $\pi_1^{\text{\'et}}(X)\cong \widehat{\pi_1^{top}(X(\mathbb{C}))}$

Example $(\mathbb{P}^1 \smallsetminus \{0, 1, \infty\})$

 $X=\mathbb{P}^1\smallsetminus\{0,1,\infty\}=\mathbb{C}\smallsetminus\{0,1\},$ the twice-punctured complex plane

By the theorem, $\pi_1^{\text{ét}}(X)$ is free profinite on two generators.

Fact: Every finite simple group can be generated by two elements.

This means every finite simple group is a quotient of $\pi_1^{\text{\'et}}(\mathbb{P}^1\smallsetminus\{0,1,\infty\})!!!$ It is often said that this group is one of the most important in all of mathematics.

• Let K be a field and \mathcal{O}_S a ring of S-integers in K.

- Let *K* be a field and \mathcal{O}_S a ring of *S*-integers in *K*.
- The equation u + v = 1 for $u, v \in \mathcal{O}_S^{\times}$ is called the *S*-unit equation.

- Let K be a field and \mathcal{O}_S a ring of S-integers in K.
- The equation u + v = 1 for $u, v \in \mathcal{O}_S^{\times}$ is called the *S*-unit equation.
- (Dirichlet) When *K* is a number field, the *S*-unit equation has finitely many solutions.

- Let K be a field and \mathcal{O}_S a ring of S-integers in K.
- The equation u + v = 1 for $u, v \in \mathcal{O}_S^{\times}$ is called the *S*-unit equation.
- (Dirichlet) When *K* is a number field, the *S*-unit equation has finitely many solutions.
- (Baker) When *K* is a number field, there is an effective upper bound for number of solutions.

- Let *K* be a field and \mathcal{O}_S a ring of *S*-integers in *K*.
- The equation u + v = 1 for $u, v \in \mathcal{O}_S^{\times}$ is called the *S*-unit equation.
- (Dirichlet) When *K* is a number field, the *S*-unit equation has finitely many solutions.
- (Baker) When *K* is a number field, there is an effective upper bound for number of solutions.
- (Mason, Silverman) When K = k(C) is the function field of a smooth projective curve, the *S*-unit equation has finitely many solutions (up to $u, v \in k^*$) and there is an effective upper bound.

- Let *K* be a field and \mathcal{O}_S a ring of *S*-integers in *K*.
- The equation u + v = 1 for $u, v \in \mathcal{O}_S^{\times}$ is called the *S*-unit equation.
- (Dirichlet) When *K* is a number field, the *S*-unit equation has finitely many solutions.
- (Baker) When *K* is a number field, there is an effective upper bound for number of solutions.
- (Mason, Silverman) When K = k(C) is the function field of a smooth projective curve, the *S*-unit equation has finitely many solutions (up to $u, v \in k^*$) and there is an effective upper bound.
- Ambitious goal[†]: reprove these results using "smallness" of the étale fundamental group $\pi_1^{\text{ét}}(X)$ where X = C or $X = \text{Spec } \mathbb{Z}$.

- Let *K* be a field and \mathcal{O}_S a ring of *S*-integers in *K*.
- The equation u + v = 1 for $u, v \in \mathcal{O}_S^{\times}$ is called the *S*-unit equation.
- (Dirichlet) When *K* is a number field, the *S*-unit equation has finitely many solutions.
- (Baker) When *K* is a number field, there is an effective upper bound for number of solutions.
- (Mason, Silverman) When K = k(C) is the function field of a smooth projective curve, the *S*-unit equation has finitely many solutions (up to $u, v \in k^*$) and there is an effective upper bound.
- Ambitious goal[†]: reprove these results using "smallness" of the étale fundamental group $\pi_1^{\text{ét}}(X)$ where X = C or $X = \text{Spec } \mathbb{Z}$.

- Let K be a field and \mathcal{O}_S a ring of S-integers in K.
- The equation u + v = 1 for $u, v \in \mathcal{O}_S^{\times}$ is called the *S*-unit equation.
- (Dirichlet) When *K* is a number field, the *S*-unit equation has finitely many solutions.
- (Baker) When *K* is a number field, there is an effective upper bound for number of solutions.
- (Mason, Silverman) When K = k(C) is the function field of a smooth projective curve, the *S*-unit equation has finitely many solutions (up to $u, v \in k^*$) and there is an effective upper bound.
- Ambitious goal[†]: reprove these results using "smallness" of the étale fundamental group $\pi_1^{\text{ét}}(X)$ where X = C or $X = \text{Spec } \mathbb{Z}$.

† work with Lloyd West at University of Virginia

Thank you!