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Introduction

The diagram
Y

X

G might have a different meaning for each person

in the room. For example, it might represent:

A covering space, with G the group of deck transformations

A field extension, with G the Galois group

A morphism of varieties/schemes, with G the Galois group of the
corresponding field extension

An extension of differential fields, i.e. fields with a derivation, with
G some Lie group acting on the extension (this is the jumping-off
point for differential Galois theory)
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Review: Covering spaces

Definition
Let X be a “nice” space. A cover of X is a map p : Y → X that is a
local homeomorphism.

In algebraic topology, we classify equivalence classes of these covers
by studying the category CovX :

objects: covers Y p−→ X

morphisms: HomX(Y, Z) is maps commuting with covers:

Y Z

X
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Review: Covering spaces

One defines a universal cover X̃ → X to be the solution to the
universal mapping problem in HomX(−,−)

and then the
fundamental group of X can be defined:

πtop
1 (X) := AutX(X̃).

X̃

X

πtop
1 (X)

(Alternatively, you can define πtop
1 using loops, but loops won’t make

sense in every category.)

Unfortunately, X̃ does not exist in algebraic categories, so we adopt a
different perspective of πtop

1 (X).
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Review: Covering spaces

Definition
For a point x ∈ X, the fibre functor over x is

Fibx : CovX −→ Sets

(Y
p−→ X) −→ p−1(x).

By the universal property of X̃, Fibx is a representable functor:

Fibx(−) ∼= HomX(X̃x̃,−).

Theorem (Monodromy)

There is an isomorphism πtop
1 (X,x)

∼−→ Aut(Fibx).

Aut(Fibx) will be a good candidate for defining fundamental groups in
other settings.
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Review: Galois theory

Fix a field k, an algebraic closure k̄ and a separable closure
k ⊆ ksep ⊆ k̄. Set Gk = Gal(ksep/k), called the absolute Galois group.

Theorem

For any finite, separable extension of fields L/k, Homk(L, ksep) is a
finite, continuous, transitive Gk-set. Moreover, there is an
anti-equivalence of categories

{finite, separable L/k} ∼−→ {finite, cts., transitive Gk-sets}
L/k 7−→ Homk(L, ksep).
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Schemes

Let (X,OX) be a scheme:

X is a topological space
OX is a sheaf of rings on X
Each stalk is a local ring: OX,x

∼= Ap for some ring A and prime
ideal p
There is an open covering X =

⋃
Xi such that Xi

∼= SpecAi for
rings Ai

Definition

A morphism of schemes is a pair (f, f#) : (Y,OY )→ (X,OX)
consisting of:
(a) A map between spaces f : Y → X

(b) A morphism of sheaves f# : OY → f∗OX that preserves local
ring structure.
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Étale covers

Definition

A morphism of schemes p : Y → X is étale at y ∈ Y if the induced
morphism on local rings p# : OX,p(y) → OY,y satisfies:

(a) (Flat) The functor M 7→M ⊗OX,p(y)
OY,y is exact

(b) (Unramified) The extension of residue fields (OY,y/p
#(mp(y))OY,y

is finite and separable.
If p is étale at every y ∈ Y , we call p : Y → X an étale cover of X.

Let FétX be the category consisting of finite étale covers Y p−→ X,
together with morphisms of covers:

Y Z

X
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The fibre functor

Fix a “geometric point” x : Spec k → X where k is a field.

Then for any
morphism f : Y → X, one can define the fibre Fibx(Y ) via a pullback
or fibred product:

Spec k ×X YFibx(Y ) := Y

Spec k Xx

This defines a fibre functor over x:

Fibx : FétX −→ Sets

(Y
p−→ X) 7−→ Fibx(Y ) = Spec k ×X Y.

(Note that Spec k is, as a space, just a point. So this jives with the
topological case.)
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The étale fundamental group

Definition

The étale fundamental group of a scheme X at a geometric point
x : Spec k → X is defined as the automorphism group of the fibre
functor over x:

πét
1 (X,x) := Aut(Fibx).

Theorem (Grothendieck)

For a connected scheme X and a geometric point x : Spec k → X,
(1) πét

1 (X,x) is a profinite group which acts continuously on each
fibre Fibx(Y ) for Y → X any cover.

(2) Fibx : FétX → {continuous, finite, left πét
1 (X,x)-sets} is an

equivalence of categories.
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(1) πét

1 (X,x) is a profinite group which acts continuously on each
fibre Fibx(Y ) for Y → X any cover.

(2) Fibx : FétX → {continuous, finite, left πét
1 (X,x)-sets} is an

equivalence of categories.
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Fields: schemes of dimension 0

Let X = Spec k, which is just a point. A finite étale k-algebra is a
product A = L1 × · · · × Lr of finite, separable field extensions Li/k.

Then {
finite étale covers

Y → Spec k

}
←→ {finite étale k-algebras}

and πét
1 (Spec k) ∼= Gk = Gal(ksep/k).

(You should think of SpecL for finite, separable extensions L/k as the
connected covers of Spec k.)
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Curves: schemes of dimension 1

Let X be a curve over a field k, that is, a k-scheme of dimension 1
(as a topological space). Let k(X) be the function field of X.

Fact: tr degk k(X) = 1.

Proposition

There is an equivalence of categories{
finite morphisms of curves

Y → X

}
∼−→
{

finitely generated field extensions
L/k(X), tr degk L = 1

}

Y

X

k(Y )

k(X)

Gal(k(Y )/k(X))



Introduction Review: Covering Spaces Review: Galois Theory Algebraic Fundamental Groups Examples

Curves: schemes of dimension 1

Let X be a curve over a field k, that is, a k-scheme of dimension 1
(as a topological space).

Let k(X) be the function field of X.

Fact: tr degk k(X) = 1.

Proposition

There is an equivalence of categories{
finite morphisms of curves

Y → X

}
∼−→
{

finitely generated field extensions
L/k(X), tr degk L = 1

}

Y

X

k(Y )

k(X)

Gal(k(Y )/k(X))



Introduction Review: Covering Spaces Review: Galois Theory Algebraic Fundamental Groups Examples

Curves: schemes of dimension 1

Let X be a curve over a field k, that is, a k-scheme of dimension 1
(as a topological space). Let k(X) be the function field of X.

Fact: tr degk k(X) = 1.

Proposition

There is an equivalence of categories{
finite morphisms of curves

Y → X

}
∼−→
{

finitely generated field extensions
L/k(X), tr degk L = 1

}

Y

X

k(Y )

k(X)

Gal(k(Y )/k(X))



Introduction Review: Covering Spaces Review: Galois Theory Algebraic Fundamental Groups Examples

Curves: schemes of dimension 1

Let X be a curve over a field k, that is, a k-scheme of dimension 1
(as a topological space). Let k(X) be the function field of X.

Fact: tr degk k(X) = 1.

Proposition

There is an equivalence of categories{
finite morphisms of curves

Y → X

}
∼−→
{

finitely generated field extensions
L/k(X), tr degk L = 1

}

Y

X

k(Y )

k(X)

Gal(k(Y )/k(X))



Introduction Review: Covering Spaces Review: Galois Theory Algebraic Fundamental Groups Examples

Curves: schemes of dimension 1

Let X be a curve over a field k, that is, a k-scheme of dimension 1
(as a topological space). Let k(X) be the function field of X.

Fact: tr degk k(X) = 1.

Proposition

There is an equivalence of categories{
finite morphisms of curves

Y → X

}
∼−→
{

finitely generated field extensions
L/k(X), tr degk L = 1

}

Y

X

k(Y )

k(X)

Gal(k(Y )/k(X))



Introduction Review: Covering Spaces Review: Galois Theory Algebraic Fundamental Groups Examples

Curves: schemes of dimension 1

Let X be a curve over a field k, that is, a k-scheme of dimension 1
(as a topological space). Let k(X) be the function field of X.

Fact: tr degk k(X) = 1.

Proposition

There is an equivalence of categories{
finite morphisms of curves

Y → X

}
∼−→
{

finitely generated field extensions
L/k(X), tr degk L = 1

}

Y

X

k(Y )

k(X)

Gal(k(Y )/k(X))



Introduction Review: Covering Spaces Review: Galois Theory Algebraic Fundamental Groups Examples

Curves: schemes of dimension 1

Theorem

Let k(X)ur be the union of all field extensions L/k(X) for L
corresponding to a finite étale cover Y → X. Then

πét
1 (X) ∼= Gal(k(X)ur/k(X)).

Punchline: Galois groups are fundamental groups!

When k = C, the rational points X(C) carry the structure of a
Riemann surface, and in fact we have:

Proposition

Let X/C be a curve. Then the following are (anti-)equivalent:
(a) finite morphisms of curves Y → X

(b) finite extensions L/k(X) where tr degk L = 1

(c) proper holomorphic maps of Riemann surfaces Y (C)→ X(C)
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Curves: schemes of dimension 1

Theorem (Riemann Existence Theorem)

Let X/C be a curve and let

πtop
1 (X(C)) =

〈
x1, y1, . . . , xg, yg, γ1, . . . , γn

∣∣∣∣∣∣
g∏

i=1

[xi, yi]

n∏
j=1

γj = 1

〉

be the topological fundamental group of the underlying Riemann
surface (g is the genus and n is the number of punctures). Then the
étale fundamental group of X is the profinite completion of this group:

πét
1 (X) ∼= ̂πtop

1 (X(C)).
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Curves: schemes of dimension 1

Theorem (Riemann Existence Theorem)

πét
1 (X) ∼= ̂πtop

1 (X(C))

Example (P1)

X = P1 = C ∪ {∞}, the complex projective line aka the Riemann
sphere

Any proper holomorphic map Y → P1 is trivial =⇒ πtop
1 (X) = {1}

=⇒ πét
1 (X) = {1} =⇒ any étale cover Y → P1 is an isomorphism.
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Curves: schemes of dimension 1

Theorem (Riemann Existence Theorem)

πét
1 (X) ∼= ̂πtop

1 (X(C))

Example (P1 r {0,∞})

X = P1 r {0,∞} = Cr {0}, the punctured complex plane

Here πtop
1 (X) = Z so by the theorem, πét

1 (X) ∼= Ẑ.

For every n ∈ Z, there is a finite, degree n cover Xn → X
corresponding to the holomorphic map

C −→ Cr {0}
z 7−→ zn.
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Curves: schemes of dimension 1

Theorem (Riemann Existence Theorem)

πét
1 (X) ∼= ̂πtop

1 (X(C))

Example (P1 r {0, 1,∞})

X = P1 r {0, 1,∞} = Cr {0, 1}, the twice-punctured complex plane

By the theorem, πét
1 (X) is free profinite on two generators.

Fact: Every finite simple group can be generated by two elements.

This means every finite simple group is a quotient of
πét

1 (P1 r {0, 1,∞})!!! It is often said that this group is one of the most
important in all of mathematics.
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Application: unit equations

Let K be a field and OS a ring of S-integers in K.
The equation u+ v = 1 for u, v ∈ O×S is called the S-unit equation.
(Dirichlet) When K is a number field, the S-unit equation has
finitely many solutions.
(Baker) When K is a number field, there is an effective upper
bound for number of solutions.
(Mason, Silverman) When K = k(C) is the function field of a
smooth projective curve, the S-unit equation has finitely many
solutions (up to u, v ∈ k∗) and there is an effective upper bound.
Ambitious goal†: reprove these results using “smallness” of the
étale fundamental group πét

1 (X) where X = C or X = SpecZ.

† work with Lloyd West at University of Virginia
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Thank you!
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