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Review: Covering spaces

Definition
Let X be a “nice” space. A cover of X isamapp:Y — X thatis a
local homeomorphism.

In algebraic topology, we classify equivalence classes of these covers
by studying the category Cov x:

@ objects: covers Y & X

@ morphisms: Homx (Y, Z) is maps commuting with covers:
Y —Z

\X/
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Review: Covering spaces

One defines a universal cover X — X to be the solution to the
universal mapping problem in Hom x (—, —) and then the
fundamental group of X can be defined:

X
TP (X) == Autx (X). |7ter(x)
X

(Alternatively, you can define 7°” using loops, but loops won’t make
sense in every category.)

Unfortunately, X does not exist in algebraic categories, so we adopt a
different perspective of ;" (X).
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Review: Covering spaces

Definition
For a point = € X, the fibre functor over z is
Fib, : Covx — Sets

Y LN X)— pil(x).

By the universal property of X, Fib, is a representable functor:

Fib,(—) = Homy (Xz, —).

Theorem (Monodromy)

There is an isomorphism 7P (X, z) = Aut(Fib,).

Aut(Fib,) will be a good candidate for defining fundamental groups in
other settings.



Review: Galois Theory

Y

The diagram lG might have a different meaning for each person
X
in the room. For example, it might represent:

@ A covering space, with G the group of deck transformations

@ | A field extension, with G the Galois group

@ A morphism of varieties/schemes, with G the Galois group of the
corresponding field extension

@ An extension of differential fields, i.e. fields with a derivation, with
G some Lie group acting on the extension (this is the jumping-off
point for differential Galois theory)



Review: Galois Theory

Review: Galois theory



Review: Galois Theory

Review: Galois theory

Fix a field &, an algebraic closure k and a separable closure
k C kser C k.



Review: Galois Theory

Review: Galois theory

Fix a field &, an algebraic closure k and a separable closure
k C k5P C k. Set G, = Gal(k*°?/k), called the absolute Galois group.



Review: Galois Theory

Review: Galois theory

Fix a field &, an algebraic closure k and a separable closure
k C k5P C k. Set G, = Gal(k*°?/k), called the absolute Galois group.

Theorem

For any finite, separable extension of fields L/k, Homy (L, k*P) is a
finite, continuous, transitive G-set.




Review: Galois Theory

Review: Galois theory

Fix a field &, an algebraic closure k and a separable closure
k C k5P C k. Set G, = Gal(k*°?/k), called the absolute Galois group.

Theorem

For any finite, separable extension of fields L/k, Homy (L, k*P) is a
finite, continuous, transitive G,,-set. Moreover, there is an
anti-equivalence of categories

{finite, separable L/k} = {finite, cts., transitive G},-sets}
L/k —— Homy (L, k).




Review: Galois Theory

Review: Galois theory

Theorem

For any finite, separable extension of fields L/k, Homy (L, k*¢?) is a
finite, continuous, transitive G,.-set. Moreover, there is an
anti-equivalence of categories

{finite, separable L/k} = {finite, cts., transitive G -sets}
L/k — Homy (L, k*°P).

1
Byl
|

Gr

Gy L =
Gal(L/k)




Algebraic Fundamental Groups

Y

The diagram lG might have a different meaning for each person
X
in the room. For example, it might represent:

@ A covering space, with G the group of deck transformations

@ A field extension, with G the Galois group

° ‘ A morphism of varieties/schemes, with G the Galois group

‘ of the corresponding field extension ‘

@ An extension of differential fields, i.e. fields with a derivation, with
G some Lie group acting on the extension (this is the jumping-off
point for differential Galois theory)



Algebraic Fundamental Groups

Schemes




Algebraic Fundamental Groups

Schemes

Let (X, Ox) be a scheme:



Algebraic Fundamental Groups

Schemes

Let (X, Ox) be a scheme:
@ X is a topological space



Algebraic Fundamental Groups

Schemes

Let (X, Ox) be a scheme:
@ X is a topological space
@ Ox is asheaf of rings on X



Algebraic Fundamental Groups

Schemes

Let (X, Ox) be a scheme:
@ X is a topological space
@ Ox is asheaf of rings on X

@ Each stalk is a local ring: Ox, = A, for some ring A and prime
ideal p



Algebraic Fundamental Groups

Schemes

Let (X, Ox) be a scheme:
@ X is a topological space
@ Ox is asheaf of rings on X

@ Each stalk is a local ring: Ox, = A, for some ring A and prime
ideal p

@ There is an open covering X = |J X; such that X; = Spec A; for
rings A;



Algebraic Fundamental Groups

Schemes

Let (X, Ox) be a scheme:
@ X is a topological space
@ Ox is asheaf of rings on X

@ Each stalk is a local ring: Ox, = A, for some ring A and prime
ideal p

@ There is an open covering X = |J X; such that X; = Spec A; for
rings A;



Algebraic Fundamental Groups

Schemes

Let (X, Ox) be a scheme:
@ X is a topological space
@ Ox is asheaf of rings on X

@ Each stalk is a local ring: Ox, = A, for some ring A and prime
ideal p

@ There is an open covering X = |J X; such that X; = Spec A; for
rings A;

Definition

A morphism of schemes is a pair (f, f#) : (Y,0y) — (X,0x)
consisting of:

(a) A map between spaces f:Y — X

(b) A morphism of sheaves f# : Oy — f.Ox that preserves local
ring structure.
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Etale covers

Definition

A morphism of schemes p: Y — X is étale at y € Y if the induced
morphism on local rings p# : Ox ,(,) — Oy, satisfies:

(a) (Flat) The functor M — M ®o ,,, Oy.y IS €xact

(b) (Unramified) The extension of residue fields (Oy,, /p™ (m,,))Oy,y
is finite and separable.

If pis étale at every y € Y, we call p: Y — X an étale cover of X.

Let Fétx be the category consisting of finite étale covers Y 2 X,
together with morphisms of covers:

Y — 7

\X/
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The fibre functor

Fix a “geometric point” z : Spec k — X where k is a field. Then for any
morphism f : Y — X, one can define the fibre Fib,(Y") via a pullback
or fibred product:

Fib,(Y) :=Speck xx Y — Y

! !

Speck — X

This defines a fibre functor over z:

Fib, : Fétx — Sets
(VY & X) +— Fib,(Y) = Speck x x Y.

(Note that Spec k is, as a space, just a point. So this jives with the
topological case.)
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Definition

The étale fundamental group of a scheme X at a geometric point
x : Speck — X is defined as the automorphism group of the fibre
functor over x:

(X, z) := Aut(Fib,).
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The étale fundamental group

Definition
The étale fundamental group of a scheme X at a geometric point

x : Speck — X is defined as the automorphism group of the fibre
functor over z:

(X, z) := Aut(Fib,).

Theorem (Grothendieck)

For a connected scheme X and a geometric point x : Speck — X,

(1) =%(X, x) is a profinite group which acts continuously on each
fibre Fib,(Y') forY — X any cover.

(2) Fib, : Fétx — {continuous, finite, left n* (X, x)-sets} is an
equivalence of categories.




Examples

Fields: schemes of dimension 0



Examples

Fields: schemes of dimension 0

Let X = Speck, which is just a point.



Examples

Fields: schemes of dimension 0

Let X = Speck, which is just a point. A finite étale k-algebrais a
product A = L; x --- x L, of finite, separable field extensions L;/k.



Examples

Fields: schemes of dimension 0

Let X = Speck, which is just a point. A finite étale k-algebrais a
product A = L; x --- x L, of finite, separable field extensions L;/k.

Then

finite étale covers
Y — Speck

} +— {finite étale k-algebras}

and 7" (Spec k) = Gj, = Gal(k*“? /k).



Examples

Fields: schemes of dimension 0

Let X = Speck, which is just a point. A finite étale k-algebrais a
product A = L; x --- x L, of finite, separable field extensions L;/k.

Then

{finite étale covers

Y = Speck } +— {finite étale k-algebras}

and 7" (Spec k) = Gj, = Gal(k*“? /k).

(You should think of Spec L for finite, separable extensions L/k as the
connected covers of Spec k.)
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Let X be a curve over a field k, that is, a k-scheme of dimension 1
(as a topological space). Let k(X) be the function field of X.

Fact: trdeg;, k(X) = 1.

Proposition

There is an equivalence of categories

{finite morphisms of curves} ~ {finitely generated field extensions}

Y - X L/k(X),trdeg, L =1
Y k(Y)
l ‘ } Gal(k(Y)/k(X))
X k(X)
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Curves: schemes of dimension 1

Let k(X)., be the union of all field extensions L/k(X) for L
corresponding to a finite étale coverY — X. Then

78 X) = Gal(k(X)yr/k(X)).

Punchline: Galois groups are fundamental groups!

When k = C, the rational points X (C) carry the structure of a
Riemann surface, and in fact we have:

Proposition

Let X/C be a curve. Then the following are (anti-)equivalent:

(a) finite morphisms of curves Y — X

(b) finite extensions L/k(X) where trdeg;, L = 1

(c) proper holomorphic maps of Riemann surfaces Y (C) — X (C)
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Theorem (Riemann Existence Theorem)
Let X/C be a curve and let

TP (X(C)) = <x1,y1, s Ty, Ygs Vs - -3 Yn

H[J%yi] H“Yj = 1>

i=1 j=1

be the topological fundamental group of the underlying Riemann
surface (g is the genus and n is the number of punctures). Then the
étale fundamental group of X is the profinite completion of this group:

T(X) = 7P(X(C)).
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Theorem (Riemann Existence Theorem)

Example (P!)

X = P! = CU {0}, the complex projective line aka the Riemann
sphere

Any proper holomorphic map Y — P! is trivial = 7{°’(X) = {1}
= 7¢(X) = {1} = any étale cover Y — P! is an isomorphism.
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Here 7i°?(X) = Z so by the theorem, 7t (X) = Z.
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Curves: schemes of dimension 1

Theorem (Riemann Existence Theorem)

Example (P* \ {0, 00})
X =P\ {0,00} = C ~ {0}, the punctured complex plane
Here 7! (X) = Z so by the theorem, 7¢'(X) = Z.

For every n € Z, there is a finite, degree n cover X,, — X
corresponding to the holomorphic map

C—C~ {0}
z— 2",
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Curves: schemes of dimension 1

Theorem (Riemann Existence Theorem)

Example (P! \ {0,1,00})

X =P {0,1,00} = C~ {0, 1}, the twice-punctured complex plane

By the theorem, 7$*(X) is free profinite on two generators.

Fact: Every finite simple group can be generated by two elements.

This means every finite simple group is a quotient of
¢ (P! . {0,1,00})!!! It is often said that this group is one of the most
important in all of mathematics.
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Application: unit equations

@ Let K be afield and Og a ring of S-integers in K.
@ The equation u+v = 1 for u,v € OF is called the S-unit equation.

@ (Dirichlet) When K is a number field, the S-unit equation has
finitely many solutions.

@ (Baker) When K is a number field, there is an effective upper
bound for number of solutions.

@ (Mason, Silverman) When K = k(C) is the function field of a
smooth projective curve, the S-unit equation has finitely many
solutions (up to u, v € k*) and there is an effective upper bound.

@ Ambitious goal’: reprove these results using “smallness” of the
étale fundamental group 7¢'(X) where X = C or X = SpecZ.

1 work with Lloyd West at University of Virginia
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