Wild Ramification and Stacky Curves

Andrew J. Kobin

ak5ah@virginia.edu

April 10, 2020

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Introduction				

Common problem: all sorts of information is lost when we consider quotient objects and/or singular objects.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Introduction				

Solution: Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Complex Orbite				

Complex Orbitolds

Definition

A **complex orbifold** is a topological space admitting an atlas $\{U_i\}$ where each $U_i \cong \mathbb{C}^n/G_i$ for a finite group G_i , satisfying compatibility conditions (think: manifold atlas but with extra info).

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Algebraic Stack	s			

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Algebraic Stack	s			

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Algebraic Stack	s			

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Algebraic Stack	s			

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Algebraic Stack	s			

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Algebraic Stack	s			

One important class of examples can be viewed as smooth varieties or schemes with a finite automorphism group attached at each point.

Focus on curves for the rest of the talk

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
An Example				

Example

The (compactifed) moduli space of complex elliptic curves is a stacky \mathbb{P}^1 with a generic $\mathbb{Z}/2$ and a special $\mathbb{Z}/4$ and $\mathbb{Z}/6$.

Consequence: can deduce dimension formulas for modular forms from Riemann–Roch formula for stacks.

Int	roduction	Stacks	Root Stacks	AS Root Stacks	Classification

Goal: Classify stacky curves in char. *p*.

Main obstacle to overcome:

- In char. 0, local structure is determined by a cyclic group action.
- In char. *p*, this is not enough information need more invariants than just the order of a cyclic group.

How we do it:

- Define local stacky structure intrinsically using line bundles and sections.
- Show this captures the local structure of a wild stacky curve.
- Fact: stacky curves come from local quotients.
- Show these quotients are linked to the intrinsic construction.

A Journey from Schemes to Stacks						
Introduction	Stacks	Root Stacks	AS Root Stacks	Classification		

For the uninitiated,

- An *affine scheme* is a topological space associated to a commutative ring.
- A *scheme* is a (locally ringed) space which is locally affine, or can be obtained by "gluing" affine schemes in a particular way.

To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps $T \to X$ from all other objects T.

To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps $T \to X$ from all other objects T.

Root Stacks

AS Root Stacks

A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps $T \to X$ from all other objects T.

To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps $T \to X$ from all other objects T.

Example

Let X be a plane curve given by the equation $y^2 - x = 0$.

When $T = \operatorname{Spec} A$, $X(T) = \{$ solutions to $y^2 - x = 0 \text{ over } A \}.$

In other words, X determines a functor $X : \texttt{AffSch}^{op} \to \texttt{Set}$.

Consider instead a functor $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$ with values in the category of *groupoids*.

Motivation: the "points" in X(T) may have nontrivial automorphisms, which can be recorded using groupoids instead of sets.

Definition

A stack is a functor $\mathcal{X} : \operatorname{AffSch}^{op} \to \operatorname{Gpd}$ satisfying *descent*: for any étale cover^{*} $\{U_i \to T\}$, the objects/morphisms of $\mathcal{X}(T)$ correspond to compatible objects/morphisms of $\{\mathcal{X}(U_i)\}$.

Definition

A stack is a functor $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$ satisfying *descent*.

Example

For our plane curve $X:y^2-x=0,$ groupoids remember automorphisms like $(x,y)\leftrightarrow (x,-y)$

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Quetiente				

Example

Let Y be a curve and G be a group acting on Y. This determines a quotient stack $[Y/G]: \tt{AffSch}^{op} \to \tt{Gpd}$ defined by

$$[Y/G](T) = \left\{ \begin{array}{c} P \xrightarrow{f} Y \\ p \\ p \\ T \end{array} \right\}$$

where $p:P \to T$ is a principal G-bundle and $f:P \to Y$ is G-equivariant.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

Stacky Curves

Definition

A **stacky curve** is a (smooth, separated, connected) stack

 $\mathcal{X}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ satisfying:

- (1) \mathcal{X} has an underlying *coarse moduli scheme* X with a map $\pi : \mathcal{X} \to X$ (collapse the groupoid to a set).
- (2) π is an isomorphism away from a finite set of points.
- (3) X is 1-dimensional (aka a curve).
- (4) There is an étale surjection $U \rightarrow \mathcal{X}$ where U is a scheme.
- (5) The diagonal $\Delta_{\mathcal{X}} : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is representable.

Key facts:

- (4) \implies each point of \mathcal{X} has finitely many automorphisms.
- Locally about each point $x \in \mathcal{X}$, \mathcal{X} looks like $[Y/G_x]$ where $G_x = \operatorname{Aut}(x)$.

Next: more on this local structure.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Poot Stacks				

Key fact: in char. 0, all stabilizers (automorphism groups) are cyclic.

So stacky curves can be locally modeled by a *root stack*: charts look like

$$U \cong [\operatorname{Spec} A/\mu_n]$$

where $A = K[y]/(y^n - \alpha)$ and μ_n is the group of *n*th roots of unity.

(Think: degree *n* branched cover mod μ_n -action, but remember the action using groupoids.)

Root Stacks

More rigorously:

Definition (Cadman, Abramovich–Olsson–Vistoli)

Let X be a scheme and $L \to X$ a line bundle with section $s : X \to L$. The **nth root stack** of X along (L, s) is the fibre product

Here, $[\mathbb{A}^1/\mathbb{G}_m]$ is the classifying stack for pairs (L, s).

Interpretation: $\sqrt[n]{(L,s)/X}$ admits a canonical tensor *n*th root of (L,s), i.e. (M,t) such that $M^{\otimes n} = L$ and $t^n = s$ (after pullback).

Quick Break for Terminology

When our stacks are defined over a field k, we refer to them as:

- tame stacks if the stabilizer group of any point has order coprime to char k (always the case when char k = 0);
- wild stacks if any stabilizer group has order divisible by $\operatorname{char} k$ (only happens when $\operatorname{char} k = p$ is prime).

Root Stacks

Theorem (Geraschenko–Satriano '15)

Every smooth separated **tame** Deligne–Mumford stack of finite type with trivial generic stabilizer is* a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space and a finite list of numbers corresponding to the orders of cyclic stabilizers at a finite number of stacky points.

Root Stacks

Theorem (Geraschenko–Satriano '15)

Every smooth separated **tame** Deligne–Mumford stack of finite type with trivial generic stabilizer is* a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space and a finite list of numbers corresponding to the orders of cyclic stabilizers at a finite number of stacky points.

What happens with wild stacky curves in char. p?

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
	-			

Wild Stacky Curves

In trying to classify **wild** stacky curves in char. p, we face the following problems:

- (1) Stabilizer groups need not be cyclic (or even abelian)
- (2) Cyclic $\mathbb{Z}/p^n\mathbb{Z}$ -covers of curves occur in families
- (3) Root stacks don't work
 - Finding $M^{\otimes p}$ is a problem
 - $[\mathbb{A}^1/\mathbb{G}_m] \to [\mathbb{A}^1/\mathbb{G}_m], x \mapsto x^p$ is a problem

Key case: cyclic $\mathbb{Z}/p\mathbb{Z}$ stabilizers

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Artin-Schr	eler Theory			

Idea: replace tame cyclic covers $y^n = f(x)$ with wild cyclic covers $y^p - y = f(x)$.

More specifically: Artin–Schreier theory describes cyclic degree \boldsymbol{p} covers of curves:

$$Y : y^p - y = f$$
$$\mathbb{Z}/p \bigg|_{X}$$

- Every cyclic Z/pZ-cover of curves is birationally equivalent to one with equation y^p − y = f.
- At each pole of *f*, there is a **ramification jump** which is an invariant of the cover.
- Different jumps can yield non-isomorphic covers this only happens in the wild case.
- Consequence: any classification of stacky curves must take the ramification jump into account.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Artin Sobroior	Deet Cleake			

This suggests introducing wild stacky structure using the local model

$$U = [\operatorname{Spec} A/(\mathbb{Z}/p)]$$

where $A = K[y]/(y^p - y - f(x))$ and \mathbb{Z}/p acts additively.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

$$\begin{array}{ccc} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] & & & x \\ \downarrow & & \downarrow & & & \downarrow \\ X & & & & & [\mathbb{A}^1/\mathbb{G}_m] & & & x^n \end{array}$$

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

$$\begin{array}{ccc} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] & & [u,v] \\ \downarrow & & \downarrow & & \downarrow \\ X & & & (L,s) & & [\mathbb{P}^1/\mathbb{G}_a] & & & [u^p,v^p-vu^{p-1}] \end{array}$$

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

$$\begin{array}{c} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] & \qquad [u,v] \\ \downarrow & \downarrow & \qquad \downarrow \\ X & \xrightarrow{(L,s,f)} & [\mathbb{P}^1/\mathbb{G}_a] & \qquad [u^p,v^p-vu^{p-1}] \end{array}$$

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

$$\begin{array}{ccc} \wp_1^{-1}((L,s,f)/X) & \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] & & [u,v] \\ & \downarrow & & \downarrow & & \downarrow \\ & X & & & & \downarrow & & \downarrow \\ & X & & & & & [\mathbb{P}^1/\mathbb{G}_a] & & & [u^p,v^p-vu^{p-1}] \end{array}$$

Definition (K.)

Fix $m \ge 1$. Let X be a scheme, $L \to X$ a line bundle and $s : X \to L$ and $f : X \to L^{\otimes m}$ two sections not vanishing simultaneously. The **Artin–Schreier root stack** of X with jump m along (L, s, f) is the normalized pullback

$$\begin{array}{ccc} \wp_m^{-1}((L,s,f)/X) \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] & [u,v] \\ & \downarrow & \downarrow & & \downarrow \\ & X \xrightarrow{(L,s,f)} & [\mathbb{P}(1,m)/\mathbb{G}_a] & [u^p,v^p-vu^{m(p-1)}] \end{array}$$

- $\mathbb{P}(1,m)$ is the weighted projective line with weights (1,m)
- $\mathbb{G}_a = (k, +)$, acting additively
- $[\mathbb{P}(1,m)/\mathbb{G}_a]$ is the classifying stack for triples (L,s,f) up to the principal part of f.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

$$\begin{split} \wp_m^{-1}((L,s,f)/X) & \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] & [u,v] \\ & \downarrow \stackrel{\underline{\nu}}{\downarrow} & \downarrow & \downarrow \\ & X \xrightarrow{(L,s,f)} [\mathbb{P}(1,m)/\mathbb{G}_a] & [u^p,v^p-vu^{m(p-1)}] \end{split}$$

Interpretation: $\wp_m^{-1}((L, s, f)/X)$ admits a canonical *p*th root of *L*, i.e. a line bundle *M* such that $M^{\otimes p} = L$, and an AS root of *s*.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

Key example:

Consider the AS cover

$$Y : y^{p} - y = x^{-m}$$
$$\mathbb{Z}/p \downarrow$$
$$\mathbb{P}^{1} = \operatorname{Proj} k[x_{0}, x_{1}]$$

where k is an algebraically closed field of characteristic p. Then

$$\wp_m^{-1}((\mathcal{O}(1), x_0, x_1^m) / \mathbb{P}^1) \cong [Y / (\mathbb{Z}/p)].$$

In general, every AS root stack is étale-locally isomorphic to such an "elementary AS root stack".

Example (K.)

Let's see it for m = 1, so $Y : y^p - y = x^{-1}$.

- For a (local enough) test scheme T, $\wp_1^{-1}((\mathcal{O}(1), x_0, x_1)/\mathbb{P}^1)(T)$ consists of tuples (φ, L, s, f, ψ) where:
 - $\varphi: T \to \mathbb{P}^1$;
 - $L \rightarrow T$ is a line bundle with sections s and f;
 - $\psi: L^{\otimes p} \xrightarrow{\sim} \varphi^* \mathcal{O}(1)$ identifying $s^p = \varphi^* x_0$ and $f^p f s^{p-1} = \varphi^* x_1$.

• $[Y/(\mathbb{Z}/p\mathbb{Z})](T)$ consists of diagrams

$$\left(\begin{array}{c} P \longrightarrow Y \\ \downarrow \\ T \end{array}\right)$$

where $P \to T$ is a principal $\mathbb{Z}/p\mathbb{Z}$ -bundle and $Y \to T$ is $\mathbb{Z}/p\mathbb{Z}$ -equivariant.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

Example (K.)

Let's see it for m = 1, so $Y : y^p - y = x^{-1}$.

- For a test scheme $T, \, \wp_1^{-1}((\mathcal{O}(1),x_0,x_1)/\mathbb{P}^1)(T)$ consists of tuples (φ,L,s,f,ψ)
- $[Y/(\mathbb{Z}/p\mathbb{Z})](T)$ consists of diagrams

$$\left(\begin{array}{c}
P \longrightarrow Y \\
\downarrow \\
T
\end{array}\right)$$

- The sections s, f allow one to build a \mathbb{G}_a -bundle $P \to T$ from L. Check: transition maps are in $\mathbb{Z}/p\mathbb{Z} \subseteq \mathbb{G}_a$.
- The equation $f^p fs^{p-1} = \varphi^* x_1$ determines an equivariant map $P \to Y$.

Stacks

Root Stacks

AS Root Stacks

Artin–Schreier Root Stacks

Example (K.)

Let's see it for m = 1, so $Y : y^p - y = x^{-1}$.

• This defines a functor $\wp_1^{-1}((\mathcal{O}(1), x_0, x_1)/\mathbb{P}^1)(T) \to [Y/(\mathbb{Z}/p\mathbb{Z})](T),$

$$(\varphi, L, s, f, \psi) \longmapsto \begin{pmatrix} P \longrightarrow Y \\ \downarrow \\ T \end{pmatrix}$$

for all T. Check: each one is an isomorphism.

• Finally, these assemble into an isomorphism of stacks $\wp_1^{-1}((\mathcal{O}(1), x_0, x_1)/\mathbb{P}^1) \xrightarrow{\sim} [Y/(\mathbb{Z}/p\mathbb{Z})].$

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Artin-Schre	ier Root Stack	(S		

Useful properties of AS root stacks:

Proposition (K.)

(Naturality) If $h: Y \to X$ is a morphism then

 $\wp_m^{-1}((h^*L, h^*s, h^*f)/Y) \cong \wp_m^{-1}((L, s, f)/X) \times_X^{\nu} Y$

where \times_X^{ν} denotes the normalized pullback.

In particular, AS root stacks can be iterated. Also:

Proposition (K.)

If \mathcal{X} is a Deligne–Mumford stack (e.g. a stacky curve) then any AS root stack $\wp_m^{-1}((L,s,f)/\mathcal{X})$ is also Deligne–Mumford.

Upshot: can introduce wild stacky structure "from the ground up".

Introduction

Stacks

Root Stacks

AS Root Stacks

Classification

Classification of (Some) Wild Stacky Curves

So let's classify us some wild stacky curves! (Assume: everything defined over $k = \overline{k}$)

Theorem 1 (K.)

Every Galois cover of curves $\varphi : Y \to X$ with an inertia group \mathbb{Z}/p factors étale-locally through an Artin–Schreier root stack:

Informal consequence: there are infinitely many non-isomorphic stacky curves over \mathbb{P}^1 with a single stacky point of order *p*.

This phenomenon only occurs in char. p.

Stacks

Root Stacks

AS Root Stacks

Classification

Classification of (Some) Wild Stacky Curves

Main result:

Theorem 2 (K.)

Every stacky curve \mathcal{X} with a stacky point of order p is étale-locally isomorphic to an Artin–Schreier root stack $\wp_m^{-1}((L,s,f)/U)$ over an open subscheme U of the coarse space of \mathcal{X} .

This can even be done globally if \mathcal{X} has coarse space \mathbb{P}^1 :

Theorem 3 (K.)

If \mathcal{X} has coarse space \mathbb{P}^1 and all stacky points of \mathcal{X} have order p, then \mathcal{X} is isomorphic to a fibre product of AS root stacks of the form $\wp_m^{-1}((L,s,f)/\mathbb{P}^1)$ for (m,p) = 1 and (L,s,f).

Classification of (Some) Wild Stacky Curves

Theorem 1 (K.)

Every Galois cover of curves $\varphi : Y \to X$ with an inertia group \mathbb{Z}/p factors étale-locally through an Artin–Schreier root stack.

Proof Sketch: We want to find étale "neighborhoods" $U \to X$ and $V \to Y$ such that $\varphi|_V$ factors as $V \to \varphi_m^{-1}((L, s, f)/U) \to U$.

- Arrange for $V \rightarrow U$ to be a one-point cover of curves with local equation $y^p y = x^m$ (using Artin Approximation + result of Harbater on *p*-covers).
- Apply generalization of Key Example to get isomorphism of stacks ℘⁻¹_m((L, s, f)/U) ≅ [V/(ℤ/pℤ)].
- Since $\varphi|_V$ automatically factors through $[V/(\mathbb{Z}/p\mathbb{Z})]$, this gives the result.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Generalizatio	ns			

What about \mathbb{Z}/p^2 -covers, stacky points of order p^2 , and beyond?

For cyclic stabilizer groups \mathbb{Z}/p^n , Artin–Schreier theory is subsumed by **Artin–Schreier–Witt theory**:

- AS equations $y^p y = f(x)$ are replaced by Witt vector equations $\underline{y}^p \underline{y} = \underline{f}(\underline{x}) = (f_0(\underline{x}), \dots, f_n(\underline{x})).$
- Covers are characterized by sequences of ramification jumps.
- Local structure is $U = [\operatorname{Spec} A/(\mathbb{Z}/p^n)]$ where $A = K[\mathbf{y}]/(\mathbf{y}^p \mathbf{y} \mathbf{f}).$

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Generalizatio	ns			

What about \mathbb{Z}/p^2 -covers, stacky points of order p^2 , and beyond?

For cyclic stabilizer groups \mathbb{Z}/p^n , Artin–Schreier theory is subsumed by **Artin–Schreier–Witt theory**:

- AS equations $y^p y = f(x)$ are replaced by Witt vector equations $\underline{y}^p \underline{y} = \underline{f}(\underline{x}) = (f_0(\underline{x}), \dots, f_n(\underline{x})).$
- Covers are characterized by sequences of ramification jumps.

• Local structure is
$$U = [\operatorname{Spec} A/(\mathbb{Z}/p^n)]$$
 where $A = K[\underline{y}]/(\underline{y}^p - \underline{y} - \underline{f}).$

Question

How can we introduce structures like $[Y/(\mathbb{Z}/p^2\mathbb{Z})]$ intrinsically? Can these structures be classified?

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Generalizatio	ons			

- \mathbb{G}_a is the additive group scheme
- $\mathbb{P}(1,m)$ is the weighted projective line
- $[\mathbb{P}(1,m)/\mathbb{G}_a]$ classifies triples (L,s,f) up to principal part of f.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Generalization	S			

- \mathbb{W}_n is the ring of length n Witt vectors
- $\overline{\mathbb{W}}_n(\bar{m})$ is a stacky compactification of \mathbb{W}_n with weights $\bar{m} = (m_1, \dots, m_n)$
- $[\mathbb{P}(1,m)/\mathbb{G}_a]$ classifies triples (L,s,f) up to principal part of f.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Generalizations				

- \mathbb{W}_n is the ring of length n Witt vectors
- $\overline{\mathbb{W}}_n(\bar{m})$ is a stacky compactification of \mathbb{W}_n with weights $\bar{m} = (m_1, \ldots, m_n)$
- $[\overline{\mathbb{W}}_n(\bar{m})/\overline{\mathbb{W}}_n]$ classifies ???

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification
Generalization	S			

$$\begin{array}{ccc}
\Psi_{\bar{m}}^{-1}(\varphi/X) & \longrightarrow & [\overline{\mathbb{W}}_{n}(\bar{m})/\mathbb{W}_{n}] \\
\downarrow & & \downarrow & \\
& \downarrow & & \downarrow & \\
& \chi & & & \varphi & & [\overline{\mathbb{W}}_{n}(\bar{m})/\mathbb{W}_{n}]
\end{array}$$

where

- \mathbb{W}_n is the ring of length n Witt vectors
- $\overline{\mathbb{W}}_n(\bar{m})$ is a stacky compactification of \mathbb{W}_n with weights $\bar{m} = (m_1, \dots, m_n)$
- $[\overline{\mathbb{W}}_n(\bar{m})/\overline{\mathbb{W}}_n]$ classifies ???

٦

(In progress) Next step is to classify stacky curves with $\mathbb{Z}/p^n\text{-structure}$ using this construction.

Introduction	Stacks	Root Stacks	AS Root Stacks	Classification

Thank you!