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Introduction

Introduction

Common problem: all sorts of information is lost when we consider
quotient objects and/or singular objects.




Introduction

Introduction

Solution: Keep track of lost information using orbifolds (topological
and intuitive) or stacks (algebraic and fancy).
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Introduction

Complex Orbifolds

Definition

A complex orbifold is a topological space admitting an atlas {U;}
where each U; = C"/G; for a finite group G;, satisfying compatibility
conditions (think: manifold atlas but with extra info).




Introduction

Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.

Focus on curves for the rest of the talk



Introduction

An Example

Example

The (compactifed) moduli space of complex elliptic curves is a stacky
P! with a generic Z/2 and a special Z/4 and Z/6.

7./6

Z/4

Consequence: can deduce dimension formulas for modular forms
from Riemann—Roch formula for stacks.




Introduction

Goal: Classify stacky curves in char. p.

Main obstacle to overcome:
@ In char. 0, local structure is determined by a cyclic group action.

@ In char. p, this is not enough information — need more invariants
than just the order of a cyclic group.

How we do it:

@ Define local stacky structure intrinsically using line bundles and
sections.

@ Show this captures the local structure of a wild stacky curve.
@ Fact: stacky curves come from local quotients.
@ Show these quotients are linked to the intrinsic construction.



Stacks

A Journey from Schemes to Stacks

For the uninitiated,

@ An affine scheme is a topological space associated to a
commutative ring.

@ A scheme is a (locally ringed) space which is locally affine, or
can be obtained by “gluing” affine schemes in a particular way.



Stacks

A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X (7') of all maps T'— X from all other objects T'.

Let X be a plane curve given by the equation 3% — z = 0.

When T = Spec 4, X (T') = {solutions to y?> — z = 0 over A}.
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Stacks

A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X (7') of all maps T — X from all other objects T'.

Let X be a plane curve given by the equation 3% — z = 0.

When T = Spec A, X (T') = {solutions to 4> — x = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

In other words, X determines a functor X : Af£fSch® — Set.

Consider instead a functor X : Af£Sch®? — Gpd with values in the
category of groupoids.

Motivation: the “points” in X (T") may have nontrivial automorphisms,
which can be recorded using groupoids instead of sets.

Definition

A stack is a functor X' : Af£Sch®? — Gpd satisfying descent: for any
étale cover* {U; — T}, the objects/morphisms of X(T") correspond to
compatible objects/morphisms of {X'(U;)}.




Stacks

A Journey from Schemes to Stacks: The Functor of Points

Definition
A stack is a functor X’ : Af£fSch®” — Gpd satisfying descent.

—

Example

For our plane curve X : 32 — z = 0, groupoids remember
automorphisms like (z,y) + (z, —y)

A




Stacks

Quotients

Let Y be a curve and G be a group acting on Y. This determines a
quotient stack [Y /G| : Af£Sch°? — Gpd defined by

P—Y

viam =4 »|
T

where p: P — T'is a principal G-bundleand f : P » Y is
G-equivariant.




Stacks

Stacky Curves

Definition

A stacky curve is a (smooth, separated, connected) stack

X : Af£Sch®? — Gpd satisfying:

(1) X has an underlying coarse moduli scheme X with a map
m: X — X (collapse the groupoid to a set).

m is an isomorphism away from a finite set of points.

X is 1-dimensional (aka a curve).

There is an étale surjection U — X where U is a scheme.
The diagonal Ay : X — X x X is representable.

2
8
4
5

(
(
(
(

—_ — — —

Key facts:
@ (4) = each point of X’ has finitely many automorphisms.
@ Locally about each point 2 € X, X looks like [Y/G,| where
G, = Aut(z).
Next: more on this local structure.
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Root Stacks

Key fact: in char. 0, all stabilizers (automorphism groups) are cyclic.

So stacky curves can be locally modeled by a root stack: charts look
like
U = [Spec A/ pin)

where A = K[y]/(y™ — «) and u,, is the group of nth roots of unity.

(Think: degree n branched cover mod 1,,-action, but remember the
action using groupoids.)



Root Stacks

Root Stacks

More rigorously:

Definition (Cadman, Abramovich—Olsson—Vistoli)

Let X be a scheme and L — X a line bundle with section s : X — L.
The nth root stack of X along (L, s) is the fibre product

V(I s)/X — [AY/Gn] 2

l (L, s) l
X —— [AYG,] =z

Here, [A'/G,,] is the classifying stack for pairs (L, s).

Interpretation: {/(L, s)/X admits a canonical tensor nth root of
(L,s),i.e. (M,t)suchthat M®" = L and t" = s (after pullback).



Root Stacks

Quick Break for Terminology

When our stacks are defined over a field &, we refer to them as:

@ tame stacks if the stabilizer group of any point has order coprime
to char k (always the case when char k = 0);

@ wild stacks if any stabilizer group has order divisible by char &
(only happens when char k& = p is prime).



Root Stacks

Root Stacks

Theorem (Geraschenko—Satriano ‘15)

Every smooth separated tame Deligne—Mumford stack of finite type
with trivial generic stabilizer is* a root stack over its coarse space.

Tame stacky curves are completely described by their coarse space
and a finite list of numbers corresponding to the orders of cyclic
stabilizers at a finite number of stacky points.

16 5 3 60

—r— 0 —0— 00—
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Root Stacks

Theorem (Geraschenko—Satriano ‘15)

Every smooth separated tame Deligne—Mumford stack of finite type
with trivial generic stabilizer is* a root stack over its coarse space.

Tame stacky curves are completely described by their coarse space
and a finite list of numbers corresponding to the orders of cyclic
stabilizers at a finite number of stacky points.

16 5 3 60

— 00— 00—

What happens with wild stacky curves in char. p?



AS Root Stacks

Wild Stacky Curves

In trying to classify wild stacky curves in char. p, we face the following
problems:

(1) Stabilizer groups need not be cyclic (or even abelian)
(2) Cyclic Z/p™Z-covers of curves occur in families

(3) Root stacks don’t work

e Finding M®? is a problem
e [A'/G,] — [A'/G,), & — 2P is a problem

Key case: cyclic Z/pZ stabilizers



AS Root Stacks

Artin—Schreier Theory

Idea: replace tame cyclic covers y™ = f(«) with wild cyclic covers
yP -y = f(z).

More specifically: Artin—Schreier theory describes cyclic degree p
covers of curves:

Y 1y —y=f
Z/p|
X

@ Every cyclic Z/pZ-cover of curves is birationally equivalent to
one with equation y? —y = f.

@ At each pole of f, there is a ramification jump which is an
invariant of the cover.

@ Different jumps can yield non-isomorphic covers — this only
happens in the wild case.

@ Consequence: any classification of stacky curves must take the
ramification jump into account.



AS Root Stacks

Artin—-Schreier Root Stacks

This suggests introducing wild stacky structure using the local model

U = [Spec A/(Z/p)]

where A = K[y]/(y* —y — f(x)) and Z/p acts additively.



AS Root Stacks

Artin—-Schreier Root Stacks

How do we do it?

V(L s)/X Al/Gpi] z
l (L, s) l I
X [Al/Gp) x™
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How do we do it?
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| wy !

X [P!/G,) [uP, vP — vuP~1]
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Artin—-Schreier Root Stacks

How do we do it?

V(L,s)/X [P!/Ga] [u, v]

| wop | !

X ——— [PY/G,] [uP, vP — vuP~1]




AS Root Stacks

Artin—-Schreier Root Stacks

How do we do it?

o1 ((L,s, f)/X) — [P'/G4] [u, ]

| on | I

[P!/G,) [uP, vP — vuP~1]




AS Root Stacks

Artin—-Schreier Root Stacks

Definition (K.)

Fix m > 1. Let X be ascheme, L — X alinebundleands: X — L
and f : X — L®™ two sections not vanishing simultaneously. The
Artin—Schreier root stack of X with jump m along (L, s, f) is the
normalized pullback

pr_nl((LﬂSJfﬂ)/X) - []P(lvm)/@a] [u7v]
X — [P(1,m)/Gq] [uP, vP — vum(pfl)}
where

@ P(1,m) is the weighted projective line with weights (1, m)

® G, = (k,+), acting additively

@ [P(1,m)/G,] is the classifying stack for triples (L, s, f) up to the
principal part of f.




AS Root Stacks

Artin—-Schreier Root Stacks

o' (L, s, £)/X) — [P(1,m)/G,] [u, 0]
| J I
(L,s, f)
X [P(1,m)/Gq] [uP, vP — vu™ (P~

Interpretation: o *((L, s, f)/X) admits a canonical pth root of L, i.e.
a line bundle M such that M®? = L, and an AS root of s.



AS Root Stacks

Artin—-Schreier Root Stacks

Key example:

Example (K.)
Consider the AS cover

m

Yy —y=2a"
Z/}?J
P! = Proj k[zo, z1]
where k is an algebraically closed field of characteristic p. Then
om (O(1), 20, 21") /BY) = [Y/(Z/p)]-

In general, every AS root stack is étale-locally isomorphic to such an
“elementary AS root stack”.
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Artin—-Schreier Root Stacks

Example (K.)

Letsseeitform=1,s0Y : y? —y =2~ L.
@ For a (local enough) test scheme T, p; ' ((O(1), 2, z1)/P1)(T)
consists of tuples (p, L, s, f, 1) where:
e ¢:T — P
e L — Tis aline bundle with sections s and f;
e o : L® =5 o*O(1) identifying s? = ¢*xo and fP — fsP~! = p*ay.
@ [Y/(Z/pZ)|(T) consists of diagrams

P—Y

l

T

where P — T is a principal Z/pZ-bundle and Y — T is
Z/pZ-equivariant.




AS Root Stacks

Artin—-Schreier Root Stacks

Example (K.)

Letsseeitform =1,s0Y :y? —y =271,

@ For atest scheme T, p; ' ((O(1), zo, x1)/P")(T) consists of

tuples (¢, L s, f,¢)
@ [Y/(Z/pZ)|(T) consists of diagrams

pP—-Y

l

T

@ The sections s, f allow one to build a G,-bundle P — T from L.
Check: transition maps are in Z/pZ C G,.

@ The equation f? — fsP~1 = ¢*2; determines an equivariant map
P—-Y.




AS Root Stacks

Artin—-Schreier Root Stacks

Example (K.)

Letsseeitform=1,s0Y : y? —y =2~ ..

@ This defines a functor
o1 ((0(1), 0, 21) /P)(T) = [Y/(Z/pL)(T),

P—Y
((p)[ﬁsafaw)'—) l
T

for all T. Check: each one is an isomorphism.

@ Finally, these assemble into an isomorphism of stacks
o1 ((0(1), 20, 1) /BY) = [Y/(Z/pL)).
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Artin—-Schreier Root Stacks

Useful properties of AS root stacks:

Proposition (K.)
(Naturality) If h : Y — X is a morphism then

om (h*L,1*s,h* f)[Y) = o1 (L, 5, )/ X) x5% Y

where x% denotes the normalized pullback.

In particular, AS root stacks can be iterated. Also:

Proposition (K.)

If X is a Deligne—Mumford stack (e.g. a stacky curve) then any AS
root stack 1 ((L, s, f)/X) is also Deligne—Mumford.

Upshot: can introduce wild stacky structure “from the ground up”.



Classification

Classification of (Some) Wild Stacky Curves

So let’s classify us some wild stacky curves!
(Assume: everything defined over k = k)

Theorem 1 (K.)

Every Galois cover of curves ¢ : Y — X with an inertia group Z/p
factors étale-locally through an Artin—Schreier root stack:

4
X

ét
p;zl(([’v S, f)/U) —U

~

D
~
R ——

|

Informal consequence: there are infinitely many non-isomorphic
stacky curves over P! with a single stacky point of order p.

This phenomenon only occurs in char. p.
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Classification of (Some) Wild Stacky Curves

Main result:

Every stacky curve X with a stacky point of order p is étale-locally
isomorphic to an Artin-Schreier root stack ¢,,*((L, s, f)/U) over an
open subscheme U of the coarse space of X.

This can even be done globally if X has coarse space P*':

If X has coarse space P' and all stacky points of X have order p,
then X is isomorphic to a fibre product of AS root stacks of the form

ol ((L,s, f)/PY) for (m,p) =1 and (L, s, f).




Classification

Classification of (Some) Wild Stacky Curves

Every Galois cover of curves ¢ : Y — X with an inertia group Z/p
factors étale-locally through an Artin—Schreier root stack.

Proof Sketch: We want to find étale “neighborhoods” U — X and
V — Y such that ¢|y factors as V — o 1((L, s, f)/U) — U.

@ Arrange for V. — U to be a one-point cover of curves with local
equation y? — y = 2™ (using Artin Approximation + result of
Harbater on p-covers).

@ Apply generalization of Key Example to get isomorphism of
stacks g, (L. s, f)/U) = [V/(Z/pZ)).

@ Since ¢|y automatically factors through [V/(Z/pZ)], this gives
the result.



Classification

Generalizations

What about Z/p?-covers, stacky points of order p?, and beyond?

For cyclic stabilizer groups Z/p™, Artin—Schreier theory is subsumed
by Artin—Schreier—Witt theory:

@ AS equations y? — y = f(x) are replaced by Witt vector
equations y? —y = f(x) = (fo(X), ..., fu(X))-

@ Covers are characterized by sequences of ramification jumps.

@ Local structure is U = [Spec A/(Z/p™)] where
A=K[]/(y —y—1.



Classification

Generalizations

What about Z/p?-covers, stacky points of order p?, and beyond?

For cyclic stabilizer groups Z/p™, Artin—Schreier theory is subsumed
by Artin—Schreier—Witt theory:

@ AS equations y? — y = f(x) are replaced by Witt vector
equations y? —y = f(x) = (fo(X), ..., fu(X))-

@ Covers are characterized by sequences of ramification jumps.

@ Local structure is U = [Spec A/(Z/p™)] where
A=K[]/(y —y—1.

How can we introduce structures like [Y/(Z/p*Z)] intrinsically? Can
these structures be classified?
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Generalizations

This local structure can be formally introduced using
Artin—Schreier-Witt root stacks:

om' (L 5, f)/X) — [P(1,m)/Ga]

| <., [
x —L5D e mye,)

where
@ G, is the additive group scheme
@ P(1,m) is the weighted projective line
@ [P(1,m)/G,] classifies triples (L, s, f) up to principal part of f.
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Generalizations

This local structure can be formally introduced using
Artin—-Schreier-Witt root stacks:

o' (Ly s, f)[X) —— [W,,(m)/W,,]
l = l\llﬁl,
(L,s, )

— W, (m)/W,]

where
@ W, is the ring of length n Witt vectors

® W, () is a stacky compactification of W,, with weights
m=(my,...,my)

@ [P(1,m)/G,] classifies triples (L, s, f) up to principal part of f.
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Generalizations

This local structure can be formally introduced using
Artin—-Schreier-Witt root stacks:

o' (Ly s, f)[X) —— [Wa(m)/W,]

| 4 [
272? _

where
@ W, is the ring of length n Witt vectors

e W, () is a stacky compactification of W,, with weights
m = (ml,...,mn)

® [W, (m)/W,] classifies ???
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Generalizations

This local structure can be formally introduced using
Artin—-Schreier-Witt root stacks:

Vil e/X) (W, (17) /W,
| e
X — s (W (m) /W]

where
@ W, is the ring of length n Witt vectors

e W, () is a stacky compactification of W,, with weights
m=(miy,...,my)

® [W,(m)/W,] classifies ???

(In progress) Next step is to classify stacky curves with
Z/p™-structure using this construction.
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Thank you!
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