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Introduction

Common problem: all sorts of information is lost when we consider
quotient objects and/or singular objects.
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Introduction

Solution: Keep track of lost information using orbifolds (topological
and intuitive) or stacks (algebraic and fancy).
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Complex Orbifolds

Definition

A complex orbifold is a topological space admitting an atlas {Ui}
where each Ui ∼= Cn/Gi for a finite group Gi, satisfying compatibility
conditions (think: manifold atlas but with extra info).
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.

Z/3
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.

Z/6
Z/3
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.

Z/6
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.

Z/6
D6 M

Z/3

Focus on curves for the rest of the talk
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.

Z/6
D6 M

Z/3

Focus on curves for the rest of the talk
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An Example

Example

The (compactifed) moduli space of complex elliptic curves is a stacky
P1 with a generic Z/2 and a special Z/4 and Z/6.

Z/6

Z/4

Consequence: can deduce dimension formulas for modular forms
from Riemann–Roch formula for stacks.
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Goal: Classify stacky curves in char. p.

Main obstacle to overcome:
In char. 0, local structure is determined by a cyclic group action.
In char. p, this is not enough information – need more invariants
than just the order of a cyclic group.

How we do it:
Define local stacky structure intrinsically using line bundles and
sections.
Show this captures the local structure of a wild stacky curve.
Fact: stacky curves come from local quotients.
Show these quotients are linked to the intrinsic construction.
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A Journey from Schemes to Stacks

For the uninitiated,
An affine scheme is a topological space associated to a
commutative ring.
A scheme is a (locally ringed) space which is locally affine, or
can be obtained by “gluing” affine schemes in a particular way.

SpecA

A
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X(T ) of all maps T → X from all other objects T .

Example

Let X be a plane curve given by the equation y2 − x = 0.

XX(T )

When T = SpecA, X(T ) = {solutions to y2 − x = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X(T ) of all maps T → X from all other objects T .

Example

Let X be a plane curve given by the equation y2 − x = 0.

X(R)X(R)

When T = SpecA, X(T ) = {solutions to y2 − x = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X(T ) of all maps T → X from all other objects T .

Example

Let X be a plane curve given by the equation y2 − x = 0.

X(Q)X(Q)

When T = SpecA, X(T ) = {solutions to y2 − x = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X(T ) of all maps T → X from all other objects T .

Example

Let X be a plane curve given by the equation y2 − x = 0.

X(C)

When T = SpecA, X(T ) = {solutions to y2 − x = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

In other words, X determines a functor X : AffSchop → Set.

Consider instead a functor X : AffSchop → Gpd with values in the
category of groupoids.

Motivation: the “points” in X(T ) may have nontrivial automorphisms,
which can be recorded using groupoids instead of sets.

Definition
A stack is a functor X : AffSchop → Gpd satisfying descent: for any
étale cover∗ {Ui → T}, the objects/morphisms of X (T ) correspond to
compatible objects/morphisms of {X (Ui)}.
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A Journey from Schemes to Stacks: The Functor of Points

Definition
A stack is a functor X : AffSchop → Gpd satisfying descent.

Example

For our plane curve X : y2 − x = 0, groupoids remember
automorphisms like (x, y)↔ (x,−y)

2
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Quotients

Example

Let Y be a curve and G be a group acting on Y . This determines a
quotient stack [Y/G] : AffSchop → Gpd defined by

[Y/G](T ) =


P Y

T

f

p


where p : P → T is a principal G-bundle and f : P → Y is
G-equivariant.
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Stacky Curves

Definition
A stacky curve is a (smooth, separated, connected) stack
X : AffSchop → Gpd satisfying:
(1) X has an underlying coarse moduli scheme X with a map

π : X → X (collapse the groupoid to a set).
(2) π is an isomorphism away from a finite set of points.
(3) X is 1-dimensional (aka a curve).
(4) There is an étale surjection U → X where U is a scheme.
(5) The diagonal ∆X : X → X ×X is representable.

Key facts:
(4) =⇒ each point of X has finitely many automorphisms.
Locally about each point x ∈ X , X looks like [Y/Gx] where
Gx = Aut(x).

Next: more on this local structure.
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Root Stacks

Key fact: in char. 0, all stabilizers (automorphism groups) are cyclic.

So stacky curves can be locally modeled by a root stack: charts look
like

U ∼= [SpecA/µn]

where A = K[y]/(yn − α) and µn is the group of nth roots of unity.

(Think: degree n branched cover mod µn-action, but remember the
action using groupoids.)
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Root Stacks

More rigorously:

Definition (Cadman, Abramovich–Olsson–Vistoli)

Let X be a scheme and L→ X a line bundle with section s : X → L.
The nth root stack of X along (L, s) is the fibre product

n
√

(L, s)/X [A1/Gm]

X [A1/Gm]

x

xn
(L, s)

Here, [A1/Gm] is the classifying stack for pairs (L, s).

Interpretation: n
√

(L, s)/X admits a canonical tensor nth root of
(L, s), i.e. (M, t) such that M⊗n = L and tn = s (after pullback).
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Quick Break for Terminology

When our stacks are defined over a field k, we refer to them as:

tame stacks if the stabilizer group of any point has order coprime
to char k (always the case when char k = 0);

wild stacks if any stabilizer group has order divisible by char k
(only happens when char k = p is prime).
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Root Stacks

Theorem (Geraschenko–Satriano ‘15)

Every smooth separated tame Deligne–Mumford stack of finite type
with trivial generic stabilizer is∗ a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space
and a finite list of numbers corresponding to the orders of cyclic
stabilizers at a finite number of stacky points.

16 5 3 60
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Root Stacks

Theorem (Geraschenko–Satriano ‘15)

Every smooth separated tame Deligne–Mumford stack of finite type
with trivial generic stabilizer is∗ a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space
and a finite list of numbers corresponding to the orders of cyclic
stabilizers at a finite number of stacky points.

16 5 3 60

What happens with wild stacky curves in char. p?
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Wild Stacky Curves

In trying to classify wild stacky curves in char. p, we face the following
problems:
(1) Stabilizer groups need not be cyclic (or even abelian)
(2) Cyclic Z/pnZ-covers of curves occur in families
(3) Root stacks don’t work

Finding M⊗p is a problem
[A1/Gm]→ [A1/Gm], x 7→ xp is a problem

Key case: cyclic Z/pZ stabilizers
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Artin–Schreier Theory

Idea: replace tame cyclic covers yn = f(x) with wild cyclic covers
yp − y = f(x).

More specifically: Artin–Schreier theory describes cyclic degree p
covers of curves:

X

Y : yp − y = f

Z/p

Every cyclic Z/pZ-cover of curves is birationally equivalent to
one with equation yp − y = f .
At each pole of f , there is a ramification jump which is an
invariant of the cover.
Different jumps can yield non-isomorphic covers – this only
happens in the wild case.
Consequence: any classification of stacky curves must take the
ramification jump into account.
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Artin–Schreier Root Stacks

This suggests introducing wild stacky structure using the local model

U = [SpecA/(Z/p)]

where A = K[y]/(yp − y − f(x)) and Z/p acts additively.
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [A1/Gm]

X [A1/Gm]

x

xn
(L, s)
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s)
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s, f)
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Artin–Schreier Root Stacks

How do we do it?

℘−1
1 ((L, s, f)/X) [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s, f)
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Artin–Schreier Root Stacks

Definition (K.)

Fix m ≥ 1. Let X be a scheme, L→ X a line bundle and s : X → L
and f : X → L⊗m two sections not vanishing simultaneously. The
Artin–Schreier root stack of X with jump m along (L, s, f) is the
normalized pullback

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

[u, v]

[up, vp − vum(p−1)]
(L, s, f)

ν

where
P(1,m) is the weighted projective line with weights (1,m)

Ga = (k,+), acting additively
[P(1,m)/Ga] is the classifying stack for triples (L, s, f) up to the
principal part of f .
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Artin–Schreier Root Stacks

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

[u, v]

[up, vp − vum(p−1)]
(L, s, f)

ν

Interpretation: ℘−1
m ((L, s, f)/X) admits a canonical pth root of L, i.e.

a line bundle M such that M⊗p = L, and an AS root of s.
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Artin–Schreier Root Stacks

Key example:

Example (K.)

Consider the AS cover

P1 = Proj k[x0, x1]

Y : yp − y = x−m

Z/p

where k is an algebraically closed field of characteristic p. Then

℘−1
m ((O(1), x0, x

m
1 )/P1) ∼= [Y/(Z/p)].

In general, every AS root stack is étale-locally isomorphic to such an
“elementary AS root stack”.
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Artin–Schreier Root Stacks

Example (K.)

Let’s see it for m = 1, so Y : yp − y = x−1.

For a (local enough) test scheme T , ℘−1
1 ((O(1), x0, x1)/P1)(T )

consists of tuples (ϕ,L, s, f, ψ) where:
ϕ : T → P1;
L→ T is a line bundle with sections s and f ;
ψ : L⊗p ∼−→ ϕ∗O(1) identifying sp = ϕ∗x0 and fp − fsp−1 = ϕ∗x1.

[Y/(Z/pZ)](T ) consists of diagrams P Y

T


where P → T is a principal Z/pZ-bundle and Y → T is
Z/pZ-equivariant.
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Artin–Schreier Root Stacks

Example (K.)

Let’s see it for m = 1, so Y : yp − y = x−1.

For a test scheme T , ℘−1
1 ((O(1), x0, x1)/P1)(T ) consists of

tuples (ϕ,L, s, f, ψ)

[Y/(Z/pZ)](T ) consists of diagrams P Y

T


The sections s, f allow one to build a Ga-bundle P → T from L.
Check: transition maps are in Z/pZ ⊆ Ga.
The equation fp − fsp−1 = ϕ∗x1 determines an equivariant map
P → Y .
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Artin–Schreier Root Stacks

Example (K.)

Let’s see it for m = 1, so Y : yp − y = x−1.

This defines a functor
℘−1

1 ((O(1), x0, x1)/P1)(T )→ [Y/(Z/pZ)](T ),

(ϕ,L, s, f, ψ) 7−→

 P Y

T


for all T . Check: each one is an isomorphism.
Finally, these assemble into an isomorphism of stacks
℘−1

1 ((O(1), x0, x1)/P1)
∼−→ [Y/(Z/pZ)].
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Artin–Schreier Root Stacks

Useful properties of AS root stacks:

Proposition (K.)

(Naturality) If h : Y → X is a morphism then

℘−1
m ((h∗L, h∗s, h∗f)/Y ) ∼= ℘−1

m ((L, s, f)/X)×νX Y

where ×νX denotes the normalized pullback.

In particular, AS root stacks can be iterated. Also:

Proposition (K.)

If X is a Deligne–Mumford stack (e.g. a stacky curve) then any AS
root stack ℘−1

m ((L, s, f)/X ) is also Deligne–Mumford.

Upshot: can introduce wild stacky structure “from the ground up”.
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Classification of (Some) Wild Stacky Curves

So let’s classify us some wild stacky curves!
(Assume: everything defined over k = k̄)

Theorem 1 (K.)

Every Galois cover of curves ϕ : Y → X with an inertia group Z/p
factors étale-locally through an Artin–Schreier root stack:

Y X

V ℘−1
m ((L, s, f)/U) U

ϕ

ét ét

Informal consequence: there are infinitely many non-isomorphic
stacky curves over P1 with a single stacky point of order p.

This phenomenon only occurs in char. p.
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Classification of (Some) Wild Stacky Curves

Main result:

Theorem 2 (K.)

Every stacky curve X with a stacky point of order p is étale-locally
isomorphic to an Artin–Schreier root stack ℘−1

m ((L, s, f)/U) over an
open subscheme U of the coarse space of X .

This can even be done globally if X has coarse space P1:

Theorem 3 (K.)

If X has coarse space P1 and all stacky points of X have order p,
then X is isomorphic to a fibre product of AS root stacks of the form
℘−1
m ((L, s, f)/P1) for (m, p) = 1 and (L, s, f).
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Classification of (Some) Wild Stacky Curves

Theorem 1 (K.)

Every Galois cover of curves ϕ : Y → X with an inertia group Z/p
factors étale-locally through an Artin–Schreier root stack.

Proof Sketch: We want to find étale “neighborhoods” U → X and
V → Y such that ϕ|V factors as V → ℘−1

m ((L, s, f)/U)→ U .

Arrange for V → U to be a one-point cover of curves with local
equation yp − y = xm (using Artin Approximation + result of
Harbater on p-covers).

Apply generalization of Key Example to get isomorphism of
stacks ℘−1

m ((L, s, f)/U) ∼= [V/(Z/pZ)].

Since ϕ|V automatically factors through [V/(Z/pZ)], this gives
the result.
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Generalizations

What about Z/p2-covers, stacky points of order p2, and beyond?

For cyclic stabilizer groups Z/pn, Artin–Schreier theory is subsumed
by Artin–Schreier–Witt theory:

AS equations yp − y = f(x) are replaced by Witt vector
equations yp − y = f(x) = (f0(x), . . . , fn(x)).

Covers are characterized by sequences of ramification jumps.

Local structure is U = [SpecA/(Z/pn)] where
A = K[y]/(yp − y− f).

Question

How can we introduce structures like [Y/(Z/p2Z)] intrinsically? Can
these structures be classified?
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Generalizations

What about Z/p2-covers, stacky points of order p2, and beyond?

For cyclic stabilizer groups Z/pn, Artin–Schreier theory is subsumed
by Artin–Schreier–Witt theory:

AS equations yp − y = f(x) are replaced by Witt vector
equations yp − y = f(x) = (f0(x), . . . , fn(x)).

Covers are characterized by sequences of ramification jumps.

Local structure is U = [SpecA/(Z/pn)] where
A = K[y]/(yp − y− f).

Question

How can we introduce structures like [Y/(Z/p2Z)] intrinsically? Can
these structures be classified?
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Generalizations

This local structure can be formally introduced using
Artin–Schreier–Witt root stacks:

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

℘m
(L, s, f)

ν

where
Ga is the additive group scheme
P(1,m) is the weighted projective line
[P(1,m)/Ga] classifies triples (L, s, f) up to principal part of f .
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Generalizations

This local structure can be formally introduced using
Artin–Schreier–Witt root stacks:

℘−1
m ((L, s, f)/X) [Wn(m̄)/Wn]

X [Wn(m̄)/Wn]

Ψm̄
(L, s, f)

ν

where
Wn is the ring of length n Witt vectors
Wn(m̄) is a stacky compactification of Wn with weights
m̄ = (m1, . . . ,mn)

[P(1,m)/Ga] classifies triples (L, s, f) up to principal part of f .
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Generalizations

This local structure can be formally introduced using
Artin–Schreier–Witt root stacks:

℘−1
m ((L, s, f)/X) [Wn(m̄)/Wn]

X [Wn(m̄)/Wn]

Ψm̄

???

ν

where
Wn is the ring of length n Witt vectors
Wn(m̄) is a stacky compactification of Wn with weights
m̄ = (m1, . . . ,mn)

[Wn(m̄)/Wn] classifies ???
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Generalizations

This local structure can be formally introduced using
Artin–Schreier–Witt root stacks:

Ψ−1
m̄ (ϕ/X) [Wn(m̄)/Wn]

X [Wn(m̄)/Wn]

Ψm̄
ϕ

ν

where
Wn is the ring of length n Witt vectors
Wn(m̄) is a stacky compactification of Wn with weights
m̄ = (m1, . . . ,mn)

[Wn(m̄)/Wn] classifies ???

(In progress) Next step is to classify stacky curves with
Z/pn-structure using this construction.



Introduction Stacks Root Stacks AS Root Stacks Classification

Thank you!
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