What is a Stack? Part 1

Andrew J. Kobin
akobin@ucsc.edu
January 21, 2021

Introduction

Common problem: all sorts of information is lost when we consider quotient objects and/or singular objects.

Introduction

Solution: Keep track of lost information using orbifolds (topological and intuitive) or stacks (algebraic and fancy).

2

Complex Orbifolds

Definition

A complex orbifold is a topological space admitting an atlas $\left\{U_{i}\right\}$ where each $U_{i} \cong \mathbb{C}^{n} / G_{i}$ for a finite group G_{i}, satisfying compatibility conditions (think: manifold atlas but with extra info).

Algebraic Stacks

There's also a version of orbifold in algebraic geometry: an algebraic stack.

One important class of examples (Deligne-Mumford stacks) can be viewed as smooth varieties or schemes with a finite automorphism group attached at each point.

Running Example

Example

The (compactifed) moduli space of complex elliptic curves is a stacky $\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}$ with a generic $\mathbb{Z} / 2$ and a special $\mathbb{Z} / 4$ and $\mathbb{Z} / 6$.

We will delve further into this example in a bit.
For now: "algebraic objects can be parametrized algebraically", but we should keep track of automorphisms (e.g. to count properly!)

Moduli Problems

Loosely, a moduli problem is of the form "classify all objects of a certain type" admitting some natural geometric structure.

Moduli Problems

Loosely, a moduli problem is of the form "classify all objects of a certain type" admitting some natural geometric structure.

Examples:

- circles \longleftrightarrow radius + center
- circles up to isometry \longleftrightarrow radius
- lines through the origin \longleftrightarrow unit vector / \pm
- subspaces of a vector space $\longleftrightarrow r$-frame / invertible matrix
- hyperbolic structures on $\Sigma_{g} \longleftrightarrow 6 g-6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

Moduli Problems

More precisely, a moduli problem takes the form of a functor P : Schemes \rightarrow Sets.

We say P is representable if $P(X)=\operatorname{Hom}(X, M)$ for some space M - called a moduli space for P.

Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes \rightarrow Sets.
We say P is representable if $P(X)=\operatorname{Hom}(X, M)$ for some space M - called a moduli space for P.

Examples:

- circles \longleftrightarrow radius + center
- circles up to isometry \longleftrightarrow radius
- lines through the origin \longleftrightarrow unit vector / \pm
- subspaces of a vector space $\longleftrightarrow r$-frame / invertible matrix
- hyperbolic structures on $\Sigma_{g} \longleftrightarrow 6 g-6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

Moduli Problems

More precisely, a moduli problem takes the form of a functor P : Schemes \rightarrow Sets.

We say P is representable if $P(X)=\operatorname{Hom}(X, M)$ for some space M - called a moduli space for P.

Examples:

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^{2}$
- circles up to isometry \longleftrightarrow radius
- lines through the origin \longleftrightarrow unit vector / \pm
- subspaces of a vector space $\longleftrightarrow r$-frame / invertible matrix
- hyperbolic structures on $\Sigma_{g} \longleftrightarrow 6 g-6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

Moduli Problems

More precisely, a moduli problem takes the form of a functor P : Schemes \rightarrow Sets.

We say P is representable if $P(X)=\operatorname{Hom}(X, M)$ for some space M - called a moduli space for P.

Examples:

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^{2}$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- lines through the origin \longleftrightarrow unit vector / \pm
- subspaces of a vector space $\longleftrightarrow r$-frame / invertible matrix
- hyperbolic structures on $\Sigma_{g} \longleftrightarrow 6 g-6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

Moduli Problems

More precisely, a moduli problem takes the form of a functor P : Schemes \rightarrow Sets.

We say P is representable if $P(X)=\operatorname{Hom}(X, M)$ for some space M - called a moduli space for P.

Examples:

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^{2}$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- lines through the origin $\longleftrightarrow \mathbb{P}_{\mathbb{R}}^{1}$
- subspaces of a vector space $\longleftrightarrow r$-frame / invertible matrix
- hyperbolic structures on $\Sigma_{g} \longleftrightarrow 6 g-6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

Moduli Problems

More precisely, a moduli problem takes the form of a functor P : Schemes \rightarrow Sets.

We say P is representable if $P(X)=\operatorname{Hom}(X, M)$ for some space M - called a moduli space for P.

Examples:

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^{2}$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- lines through the origin $\longleftrightarrow \mathbb{P}_{\mathbb{R}}^{1}$
- subspaces of a vector space $\longleftrightarrow \operatorname{Gr}(r, n)$
- hyperbolic structures on $\Sigma_{g} \longleftrightarrow 6 g-6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

Moduli Problems

More precisely, a moduli problem takes the form of a functor P : Schemes \rightarrow Sets.

We say P is representable if $P(X)=\operatorname{Hom}(X, M)$ for some space M - called a moduli space for P.

Examples:

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^{2}$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- lines through the origin $\longleftrightarrow \mathbb{P}_{\mathbb{R}}^{1}$
- subspaces of a vector space $\longleftrightarrow \operatorname{Gr}(r, n)$
- hyperbolic structures on $\Sigma_{g} \longleftrightarrow \mathbb{R}^{6 g-6}$
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

Moduli Problems

More precisely, a moduli problem takes the form of a functor P : Schemes \rightarrow Sets.

We say P is representable if $P(X)=\operatorname{Hom}(X, M)$ for some space M - called a moduli space for P.

Examples:

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^{2}$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- lines through the origin $\longleftrightarrow \mathbb{P}_{\mathbb{R}}^{1}$
- subspaces of a vector space $\longleftrightarrow \operatorname{Gr}(r, n)$
- hyperbolic structures on $\Sigma_{g} \longleftrightarrow \mathbb{R}^{6 g-6}$
- lines on a cubic surface \longleftrightarrow zero-dim. variety with 27 points
- more examples?

Moduli Problems

Many moduli problems are algebraic in nature ("algebraic objects classified algebraically").

Example

The solutions to a polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=0$ correspond to the points of an algebraic variety:

$$
y^{2}-x=0
$$

Moduli Problems

Many moduli problems are algebraic in nature ("algebraic objects classified algebraically").

Example

The solutions to a polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=0$ correspond to the points of an algebraic variety:

$$
y^{2}-x^{3}+x-1=0
$$

Moduli Problems

Many moduli problems are algebraic in nature ("algebraic objects classified algebraically").

Example

The solutions to a polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=0$ correspond to the points of an algebraic variety:

$$
x^{2}+y^{2}-z-1=0
$$

Moduli Problems

Many moduli problems are algebraic in nature ("algebraic objects classified algebraically").

Example

The moduli problem of finding r-dimensional subspaces of an n-dimensional vector space V is represented by a variety $\operatorname{Gr}(r, n)$ called the Grassmannian variety
e.g. $\operatorname{Gr}(1, n)=\mathbb{P}^{n}$, projective n-space.

Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold E (a Riemann surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass equation $y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{C}$.

Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold E (a Riemann surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass equation $y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{C}$.

$$
y^{2}=x^{3}-x+1
$$

Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold E (a Riemann surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass equation $y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{C}$.

$$
y^{2}=x^{3}-x
$$

Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold E (a Riemann surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass equation $y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{C}$.

$$
y^{2}=x^{3}-1
$$

Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold E (a Riemann surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass equation $y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{C}$.

To classify elliptic curves, we define an invariant

$$
j(E)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}} \in \mathbb{C} .
$$

Theorem

Two elliptic curves E, E^{\prime} are isomorphic if and only if $j(E)=j\left(E^{\prime}\right)$.

Corollary

The affine j-line $\mathbb{A}_{j}^{1}:=\mathbb{C}$ is a moduli space for isomorphism classes of elliptic curves.

Running Example: Elliptic Curves

$$
E: y^{2}=x^{3}+A x+B, \quad j(E)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}}
$$

Corollary

The affine j-line $\mathbb{A}_{j}^{1}:=\mathbb{C}$ is a moduli space for isomorphism classes of elliptic curves.
https://www.desmos.com/calculator/ialhd71we3

Running Example: Elliptic Curves

A family of elliptic curves over a complex manifold X is a holomorphic map $E \rightarrow X$ whose fibres are elliptic curves (and the distinguished points are picked out by a holomorphic section $O: X \rightarrow E)$.

Running Example: Elliptic Curves

Let $\mathscr{M}_{1,1}(X)$ denote the set of isomorphism classes of (families of) elliptic curves over X. For any holomorphic map $Y \rightarrow X$, we get a map $\mathscr{M}_{1,1}(X) \rightarrow \mathscr{M}_{1,1}(Y)$ defined by pullback:

That is, $\mathscr{M}_{1,1}$ defines a functor CxMfld ${ }^{o p} \rightarrow$ Set.

Running Example: Elliptic Curves

Question: Is $\mathscr{M}_{1,1}: \operatorname{CxMfld} d^{o p} \rightarrow$ Set representable? That is, $\mathscr{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$ for a complex manifold M ?

Running Example: Elliptic Curves

Question: Is $\mathscr{M}_{1,1}:$ CxMfld $d^{o p} \rightarrow$ Set representable? That is, $\mathscr{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$ for a complex manifold M ?
Answer: Unfortunately, no. If there was, there would be a "universal elliptic curve" $E_{0} \in \mathscr{M}_{1,1}(M)$ corresponding to $i d_{M} \in \operatorname{Hom}(M, M)$ such that every elliptic curve $E \rightarrow X$ would be a pullback

for unique f and \tilde{f}.

However, no map $\tilde{f}: E \rightarrow E_{0}$ is unique: every elliptic curve $E: y^{2}=x^{3}+A x+B$ has a nontrivial degree 2 automorphism $(x, y) \mapsto(x,-y)$. Further, if $j(E)=0$ or $1728, \operatorname{Aut}(E)$ is even larger.

Running Example: Elliptic Curves

Question: Is $\mathscr{M}_{1,1}:$ CxMfld ${ }^{o p} \rightarrow$ Set representable? That is, $\mathscr{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$ for a complex manifold M ?
Partial Answer: The j-line \mathbb{A}_{j}^{1} is a coarse moduli space for the moduli problem of elliptic curves. That is:

- there is a bijection $\mathscr{M}_{1,1}(*) \cong \operatorname{Hom}\left(*, \mathbb{A}_{j}^{1}\right)=\mathbb{C}$; and
- for any other complex manifold M and natural transformation $\mathscr{M}_{1,1}(-) \rightarrow \operatorname{Hom}(-, M)$, there is a unique map $\mathbb{A}_{j}^{1} \rightarrow M$ making the following diagram commute:

Example from Topology

Here's a related example from topology.

Example

Let G be a group and consider the principal G-bundle functor

$$
\text { Top } \longrightarrow \text { Set }, \quad X \longmapsto \operatorname{Bun}_{G}(X)=\{\text { principal } G \text {-bundles }\} / \text { iso. }
$$

There is a space $B G$ which classifies G-bundles up to isomorphism:

Example from Topology

Here's a related example from topology.

Example

Let G be a group and consider the principal G-bundle functor

$$
\text { Top } \longrightarrow \text { Set }, \quad X \longmapsto \operatorname{Bun}_{G}(X)=\{\text { principal } G \text {-bundles }\} / \text { iso. }
$$

There is a space $B G$ which classifies G-bundles up to isomorphism:

Here, (f, \tilde{f}) are unique up to homotopy, i.e. there is a natural isomorphism $\operatorname{Bun}_{G}(-) \cong[-, B G]$. Want: unique on the nose.

Example from Topology

Here's a related example from topology.

Example

To fix this, treat $B G$ as a groupoid

$$
g \in G
$$

$\operatorname{Bun}_{G}(X)$ can also be a viewed as a groupoid (remember the isomorphisms $P \xrightarrow{\sim} P^{\prime}$ between G-bundles over X).

Want a natural isomorphism

$$
\operatorname{Bun}_{G}(-) \cong \operatorname{Hom}_{\text {Gpd }}(-, B G)
$$

A Journey from Schemes to Stacks

The spaces I want to consider can be "described by algebra".
Motivation: Hilbert's Nullstellensatz says that the points of \mathbb{C}^{n} are in bijection with certain ideals in a polynomial ring:

$$
\begin{aligned}
\mathbb{A}_{\mathbb{C}}^{n}:=\mathbb{C}^{n} & \longleftrightarrow \operatorname{MaxSpec} \mathbb{C}\left[z_{1}, \ldots, z_{n}\right] \\
P=\left(\alpha_{1}, \ldots, \alpha_{n}\right) & \longmapsto \mathfrak{m}_{P}=\left(z_{1}-\alpha_{1}, \ldots, z_{n}-\alpha_{n}\right) .
\end{aligned}
$$

This is the jumping off point for algebraic geometry: for a general commutative ring A, there is a space $\operatorname{Spec} A$ defined by replacing "maximal ideals" with "prime ideals":

- Points of Spec $A=$ prime ideals $\mathfrak{p} \subset A$
- Closed subsets of Spec $A=$ "vanishing sets" $V(I)=\{\mathfrak{p} \mid I \subseteq \mathfrak{p}\}$
- Sheaf of rings \mathcal{O} on $\operatorname{Spec} A$ with $\mathcal{O}(\operatorname{Spec} A) \cong A$ and stalks \leftrightarrow localizations.

A Journey from Schemes to Stacks

Just as manifolds can be glued together from locally trivial patches, schemes are what we get by gluing together spaces built out of rings.

- An affine scheme is the space $\operatorname{Spec} A$ associated to a commutative ring A, together with its structure sheaf \mathcal{O}.
- A scheme is a locally ringed space which is locally affine, or can be obtained by "gluing" affine schemes (and their structure sheaves) in a compatible way.

Interlude: "Topology" is Flexible

Important: the gluing must play nicely with the chosen topology on $\operatorname{Spec} A$.
e.g. in ordinary topology, a cover $\left\{U_{i} \rightarrow X\right\}$ is a collection of open subsets $U_{i} \subseteq X$ with $\bigcup U_{i}=X$.
e.g. in the étale topology, a cover $\left\{U_{i} \rightarrow X\right\}$ is a collection of étale morphisms $f_{i}: U_{i} \rightarrow X$ with $\bigcup f_{i}\left(U_{i}\right)=X$.
($f: U \rightarrow X$ is étale if it induces an isomorphism on tangent spaces. That is, étale is the algebraic analogue of local homeomorphism in topology.)

Interlude: "Topology" is Flexible

Important: the gluing must play nicely with the chosen topology on $\operatorname{Spec} A$.
e.g. in ordinary topology, a cover $\left\{U_{i} \rightarrow X\right\}$ is a collection of open subsets $U_{i} \subseteq X$ with $\bigcup U_{i}=X$.
e.g. in the étale topology, a cover $\left\{U_{i} \rightarrow X\right\}$ is a collection of étale morphisms $f_{i}: U_{i} \rightarrow X$ with $\bigcup f_{i}\left(U_{i}\right)=X$.
($f: U \rightarrow X$ is étale if it induces an isomorphism on tangent spaces. That is, étale is the algebraic analogue of local homeomorphism in topology.)

More on this next time...

A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to understand the set $X(T)$ of all maps $T \rightarrow X$ from all other objects T.

Example

Let X be a plane curve given by the equation $y^{2}-x=0$.

When $T=\operatorname{Spec} A, X(T)=\left\{\right.$ solutions to $y^{2}-x=0$ over $\left.A\right\}$.

A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to understand the set $X(T)$ of all maps $T \rightarrow X$ from all other objects T.

Example

Let X be a plane curve given by the equation $y^{2}-x=0$.

$X(\mathbb{R})$

When $T=\operatorname{Spec} A, X(T)=\left\{\right.$ solutions to $y^{2}-x=0$ over $\left.A\right\}$.

A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to understand the set $X(T)$ of all maps $T \rightarrow X$ from all other objects T.

Example

Let X be a plane curve given by the equation $y^{2}-x=0$.

$X(\mathbb{Q})$

When $T=\operatorname{Spec} A, X(T)=\left\{\right.$ solutions to $y^{2}-x=0$ over $\left.A\right\}$.

A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to understand the set $X(T)$ of all maps $T \rightarrow X$ from all other objects T.

Example

Let X be a plane curve given by the equation $y^{2}-x=0$.

$X(\mathbb{C})$

When $T=\operatorname{Spec} A, X(T)=\left\{\right.$ solutions to $y^{2}-x=0$ over $\left.A\right\}$.

A Journey from Schemes to Stacks: The Functor of Points

In other words, X determines a functor $X: \mathrm{AffSch}^{o p} \rightarrow$ Set.
So every scheme X is like a moduli problem (super interesting in general: what do its points classify?)

Like we did with moduli problems, what happens if we instead have a functor $\mathcal{X}:$ AffSch $^{o p} \rightarrow$ Gpd with values in the category of groupoids.

Definition

A stack is a functor $\mathcal{X}:$ AffSch $^{o p} \rightarrow$ Gpd satisfying descent: for any étale cover* $\left\{U_{i} \rightarrow T\right\}$, the objects/morphisms of $\mathcal{X}(T)$ correspond bijectively to compatible objects/morphisms of $\left\{\mathcal{X}\left(U_{i}\right)\right\}$.

A Journey from Schemes to Stacks: The Functor of Points

Definition

A stack is a functor $\mathcal{X}:$ AffSch $^{o p} \rightarrow$ Gpd satisfying descent.

Example

For our plane curve $X: y^{2}-x=0$, groupoids remember automorphisms like $(x, y) \leftrightarrow(x,-y)$

$?$

Quotients

Example

Let Y be a scheme and G be a group acting on Y. This determines a quotient stack $[Y / G]:$ AffSch ${ }^{o p} \rightarrow$ Gpd defined by

$$
[Y / G](T)=\left\{\begin{array}{cc}
P \stackrel{f}{\longrightarrow} Y \\
p \downarrow \\
T &
\end{array}\right\}
$$

where $p: P \rightarrow T$ is a principal G-bundle and $f: P \rightarrow Y$ is G-equivariant.

Quotients

Example

Let Y be a scheme and G be a group acting on Y. This determines a quotient stack $[Y / G]:$ AffSch ${ }^{o p} \rightarrow$ Gpd defined by

$$
[Y / G](T)=\left\{\begin{array}{cl}
P \stackrel{f}{\longrightarrow} Y \\
p \downarrow \\
T &
\end{array}\right\}
$$

where $p: P \rightarrow T$ is a principal G-bundle and $f: P \rightarrow Y$ is G-equivariant.

Exercise: Why is this the right notion of quotient?

Quotients

Example

The classifying stack of a group G is the stack $B G: \operatorname{AffSch}^{o p} \rightarrow \mathrm{Gpd}$ defined by
$B G(T)=$ the groupoid of principal G-bundles $P \rightarrow T$.

Quotients

Example

The classifying stack of a group G is the stack $B G: \operatorname{AffSch}^{o p} \rightarrow \mathrm{Gpd}$ defined by

$$
B G(T)=\text { the groupoid of principal } G \text {-bundles } P \rightarrow T \text {. }
$$

Alternatively, $B G=[\bullet / G]$ and the universal G-bundle from topology is replaced by:

Next Time

Next time, we will:

- Get a better idea of étale covers and descent
- See more examples of stacks
- Talk more about elliptic curves
- Show that the elliptic curve moduli problem $\mathscr{M}_{1,1}$ is (represented by) a stack
- Cast a sideways glance at moduli spaces of other things (higher genus curves, abelian varieties, ??)

Thank you!

https://www.desmos.com/calculator/ialhd71we3

