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Introduction

Common problem: all sorts of information is lost when we consider
quotient objects and/or singular objects.
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Introduction

Solution: Keep track of lost information using orbifolds (topological
and intuitive) or stacks (algebraic and fancy).

N
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Complex Orbifolds

Definition

A complex orbifold is a topological space admitting an atlas {U;}
where each U; = C" /G, for a finite group G;, satisfying compatibility
conditions (think: manifold atlas but with extra info).
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples (Deligne—Mumford stacks) can be
viewed as smooth varieties or schemes with a finite automorphism
group attached at each point.
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Running Example

The (compactifed) moduli space of complex elliptic curves is a stacky
P! = C U {oo} with a generic Z/2 and a special Z/4 and Z/6.

7./6

>

Z/4

We will delve further into this example in a bit.

For now: “algebraic objects can be parametrized algebraically”, but
we should keep track of automorphisms (e.g. to count properly!)
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Moduli Problems

Loosely, a moduli problem is of the form “classify all objects of a
certain type” admitting some natural geometric structure.
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Moduli Problems

Loosely, a moduli problem is of the form “classify all objects of a
certain type” admitting some natural geometric structure.

Examples:

circles «— radius + center

circles up to isometry «— radius

lines through the origin «+— unit vector / +

subspaces of a vector space «— r-frame / invertible matrix
hyperbolic structures on X, <— 6g — 6 coordinates

lines on a cubic surface «— there are exactly 27

more examples?



Moduli Problems
0@0000000000000

Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes — Sets.

We say P is representable if P(X) = Hom(X, M) for some space M
— called a moduli space for P.
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Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes — Sets.

We say P is representable if P(X) = Hom(X, M) for some space M
— called a moduli space for P.

Examples:

circles +— radius + center

@ circles up to isometry «+— radius

@ lines through the origin <— unit vector / +

@ subspaces of a vector space «+— r-frame / invertible matrix

o

]

°

hyperbolic structures on X, <— 6g — 6 coordinates
lines on a cubic surface «+— there are exactly 27
more examples?
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Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes — Sets.

We say P is representable if P(X) = Hom(X, M) for some space M
— called a moduli space for P.

Examples:

circles +— R x R?2

@ circles up to isometry «+— radius

@ lines through the origin <— unit vector / +

@ subspaces of a vector space «+— r-frame / invertible matrix

o

]

°

hyperbolic structures on X, <— 6g — 6 coordinates
lines on a cubic surface «+— there are exactly 27
more examples?
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Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes — Sets.

We say P is representable if P(X) = Hom(X, M) for some space M
— called a moduli space for P.

Examples:

circles +— R x R?2

@ circles up to isometry +— R+ ¢

@ lines through the origin <— unit vector / +

@ subspaces of a vector space «+— r-frame / invertible matrix

o

]

°

hyperbolic structures on X, <— 6g — 6 coordinates
lines on a cubic surface «+— there are exactly 27
more examples?
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Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes — Sets.

We say P is representable if P(X) = Hom(X, M) for some space M
— called a moduli space for P.

Examples:

circles +— R x R?2

@ circles up to isometry +— R+ ¢

@ lines through the origin +— P}

@ subspaces of a vector space «+— r-frame / invertible matrix

o

]

°

hyperbolic structures on X, <— 6g — 6 coordinates
lines on a cubic surface «+— there are exactly 27
more examples?
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Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes — Sets.

We say P is representable if P(X) = Hom(X, M) for some space M
— called a moduli space for P.

Examples:

circles +— R x R?2

@ circles up to isometry +— R+ ¢

@ lines through the origin +— P}

@ subspaces of a vector space «+— Gr(r,n)

o

o

°

hyperbolic structures on X, <— 6g — 6 coordinates
lines on a cubic surface «+— there are exactly 27
more examples?
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Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes — Sets.

We say P is representable if P(X) = Hom(X, M) for some space M
— called a moduli space for P.

Examples:

circles +— R x R?2

@ circles up to isometry +— R+ ¢

@ lines through the origin +— P}

@ subspaces of a vector space «+— Gr(r,n)

o

o

°

hyperbolic structures on %, «— R6976
lines on a cubic surface «+— there are exactly 27
more examples?



Moduli Problems
000000000000000

Moduli Problems

More precisely, a moduli problem takes the form of a functor
P : Schemes — Sets.

We say P is representable if P(X) = Hom(X, M) for some space M
— called a moduli space for P.

Examples:

circles +— R x R?2

@ circles up to isometry +— R+ ¢

@ lines through the origin +— P}

@ subspaces of a vector space «+— Gr(r,n)

o

o

°

hyperbolic structures on %, «— R6976
lines on a cubic surface +— zero-dim. variety with 27 points
more examples?
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Moduli Problems

Many moduli problems are algebraic in nature (“algebraic objects
classified algebraically”).

The solutions to a polynomial equation f(z1,...,z,) = 0 correspond
to the points of an algebraic variety:
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Moduli Problems

Many moduli problems are algebraic in nature (“algebraic objects
classified algebraically”).

The solutions to a polynomial equation f(z1,...,z,) = 0 correspond
to the points of an algebraic variety:

y—234+2-1=0
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Moduli Problems

Many moduli problems are algebraic in nature (“algebraic objects
classified algebraically”).

The solutions to a polynomial equation f(z1,...,z,) = 0 correspond
to the points of an algebraic variety:

2 +y?—2-1=0
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Moduli Problems

Many moduli problems are algebraic in nature (“algebraic objects
classified algebraically”).

The moduli problem of finding r-dimensional subspaces of an
n-dimensional vector space V is represented by a variety Gr(r, n)
called the Grassmannian variety

e.g. Gr(1,n) = P", projective n-space.
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold £ (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy? =23+ Axr+ B, A,BecC.
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold £ (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy? = x> + Ax + B, A,BcC.

v =a>—xz+1
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold E (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy? = x> + Ax + B, A,BcC.

O yz:x‘gix
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold £ (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy? = 2>+ Axr+ B, A,BecC.
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold £ (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy®? = 23> + Az + B, A,BecC.

To classify elliptic curves, we define an invariant

4A3

JE) = VT8 o ©

C.

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

The affine j-line A} := C is a moduli space for isomorphism classes
of elliptic curves.
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Running Example: Elliptic Curves

443

E:y>?=2+Axz+B, j(E)=1728——~—
y ="+ Az+ B, j(E) 4A3 1 2732

The affine j-line A} := C is a moduli space for isomorphism classes
of elliptic curves.

https://www.desmos.com/calculator/ialhd71we3


https://www.desmos.com/calculator/ialhd71we3
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Running Example: Elliptic Curves

A family of elliptic curves over a complex manifold X is a
holomorphic map E — X whose fibres are elliptic curves (and the
distinguished points are picked out by a holomorphic section
O:X = E).
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Running Example: Elliptic Curves

Let . 1(X) denote the set of isomorphism classes of (families of)
elliptic curves over X. For any holomorphic map Y — X, we get a
map #11(X) — #,1(Y) defined by pullback:

E——FE

|

Y —X

That is, .#,,1 defines a functor CxM£1d4°” — Set.
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Running Example: Elliptic Curves

Question: Is .7, ; : CxM£1d°? — Set representable? That is,
A1.1(—) = Hom(—, M) for a complex manifold M ?
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Running Example: Elliptic Curves

Question: Is .7, ; : CxM£1d°? — Set representable? That is,
A1.1(—) = Hom(—, M) for a complex manifold M ?

Answer: Unfortunately, no. If there was, there would be a “universal
elliptic curve” Ey € ., 1 (M) corresponding to idy; € Hom(M, M)
such that every elliptic curve £ — X would be a pullback

E—— Ey
‘ J for unique f and f.
X—M

However, no map f : £ — E, is unique: every elliptic curve
E :y? = 23 + Az + B has a nontrivial degree 2 automorphism
(z,y) — (z,—y). Further, if j(E) =0 or 1728, Aut(E) is even larger.
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Running Example: Elliptic Curves

Question: Is .#; ; : CxM£1d°? — Set representable? That is,
A1.1(—) = Hom(—, M) for a complex manifold M ?

Partial Answer: The j-line A} is a coarse moduli space for the
moduli problem of elliptic curves. That is:

e there is a bijection .7 1 () = Hom(x, A}) = C; and

@ for any other complex manifold M and natural transformation

M1 (—) — Hom(—, M), there is a unique map A} — M making
the following diagram commute:

.%171 —_ I'I()Hl(*7 Ajl)
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Example from Topology

Here’s a related example from topology.

Let G be a group and consider the principal G-bundle functor
Top — Set, X —— Bung(X) = {principal G-bundles} /iso.

There is a space BG which classifies G-bundles up to isomorphism:

PLEG

|,

X — BG
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Example from Topology

Here’s a related example from topology.

Let G be a group and consider the principal G-bundle functor
Top — Set, X —— Bung(X) = {principal G-bundles} /iso.

There is a space BG which classifies G-bundles up to isomorphism:

PLEG

|,

X — BG

Here, (f, f) are unique up to homotopy, i.e. there is a natural
isomorphism Bung(—) = [—, BG]. Want: unique on the nose.
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Example from Topology

Here’s a related example from topology.

To fix this, treat BG as a groupoid

oo

Bung (X) can also be a viewed as a groupoid (remember the
isomorphisms P =+ P’ between G-bundles over X).

Want a natural isomorphism

Bung(—) = Homgpa(—, BG)
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A Journey from Schemes to Stacks

The spaces | want to consider can be “described by algebra”.

Motivation: Hilbert’s Nullstellensatz says that the points of C™ are in
bijection with certain ideals in a polynomial ring:

¢ = C" +— MaxSpecClzy, . .., 2]

P=(aq,...,an) —mp = (21 —01,...,2n — Qp).

This is the jumping off point for algebraic geometry: for a general
commutative ring A, there is a space Spec A defined by replacing
“maximal ideals” with “prime ideals”:

@ Points of Spec A = prime idealsp C A
@ Closed subsets of Spec A = “vanishing sets” V/(I) = {p | I C p}

@ Sheaf of rings O on Spec A with O(Spec A) = A and stalks «
localizations.



Stacks
0O®00000000000

A Journey from Schemes to Stacks

Just as manifolds can be glued together from locally trivial patches,
schemes are what we get by gluing together spaces built out of rings.

@ An affine scheme is the space Spec A associated to a
commutative ring A, together with its structure sheaf O.

@ A scheme is a locally ringed space which is locally affine, or can
be obtained by “gluing” affine schemes (and their structure
sheaves) in a compatible way.
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Interlude: “Topology” is Flexible

Important: the gluing must play nicely with the chosen topology on
Spec A.

e.g. in ordinary topology, a cover {U; — X} is a collection of open
subsets U; C X with | U; = X.

e.g. in the étale topology, a cover {U; — X} is a collection of étale
morphisms f; : U; — X with J £:(U;) = X.

(f : U — X is étaleif it induces an isomorphism on tangent spaces.
That is, étale is the algebraic analogue of local homeomorphism in

topology.)
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Interlude: “Topology” is Flexible

Important: the gluing must play nicely with the chosen topology on
Spec A.

e.g. in ordinary topology, a cover {U; — X} is a collection of open
subsets U; C X with | U; = X.

e.g. in the étale topology, a cover {U; — X} is a collection of étale
morphisms f; : U; — X with J £:(U;) = X.

(f : U — X is étaleif it induces an isomorphism on tangent spaces.
That is, étale is the algebraic analogue of local homeomorphism in

topology.)

More on this next time...
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X (7') of all maps T'— X from all other objects T'.

Let X be a plane curve given by the equation y? — z = 0.

When T = Spec 4, X (T') = {solutions to y?> — z = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X (7') of all maps T'— X from all other objects T'.

Let X be a plane curve given by the equation y? — z = 0.

When T = Spec 4, X (T') = {solutions to y?> — z = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X (7') of all maps T'— X from all other objects T'.

Let X be a plane curve given by the equation y? — z = 0.

When T = Spec 4, X (T') = {solutions to y?> — z = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X (T') of all maps 7' — X from all other objects 7.

Let X be a plane curve given by the equation 4> — 2 = 0.

Z75
27>
.."':'
s

.‘ %7 <
. %Y
0

Z
oo
5

A

When T = Spec A, X (T) = {solutions to > — x = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

In other words, X determines a functor X : Af£fSch® — Set.

So every scheme X is like a moduli problem (super interesting in
general: what do its points classify?)

Like we did with moduli problems, what happens if we instead have a
functor X : AffSch®P — Gpd with values in the category of groupoids.

Definition

A stack is a functor X' : Af£Sch®? — Gpd satisfying descent: for any
étale cover* {U; — T}, the objects/morphisms of X(T") correspond
bijectively to compatible objects/morphisms of {X(U;)}.
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A Journey from Schemes to Stacks: The Functor of Points

Definition
A stack is a functor X' : Af£fSch®” — Gpd satisfying descent.

For our plane curve X : 2 — z = 0, groupoids remember
automorphisms like (z,y) + (z, —y)
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Quotients

Let Y be a scheme and G be a group acting on Y. This determines a
quotient stack [Y/G| : Af£Sch° — Gpd defined by

f

4)}/

P
v/eyr) =14 7|
T

where p: P — T'is a principal G-bundleand f : P — Y'is
G-equivariant.
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Quotients

Let Y be a scheme and G be a group acting on Y. This determines a
quotient stack [Y/G| : Af£Sch° — Gpd defined by

f

4)}/

P
v/eyr) =14 7|
T

where p: P — T'is a principal G-bundleand f : P — Y'is
G-equivariant.

Exercise: Why is this the right notion of quotient?
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Quotients

The classifying stack of a group G is the stack BG : Af£Sch®? — Gpd
defined by

BG(T) = the groupoid of principal G-bundles P — T.
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Quotients

The classifying stack of a group G is the stack BG : Af£Sch®? — Gpd
defined by

BG(T) = the groupoid of principal G-bundles P — T.

Alternatively, BG = [¢/G] and the universal G-bundle from topology is
replaced by:

P—— e

|

T — BG
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Next Time

Next time, we will:
@ Get a better idea of étale covers and descent

@ See more examples of stacks
@ Talk more about elliptic curves

@ Show that the elliptic curve moduli problem .#, ; is (represented
by) a stack

@ Cast a sideways glance at moduli spaces of other things (higher
genus curves, abelian varieties, ??)
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Thank you!

https://www.desmos.com/calculator/ialhd71we3
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