What is a Stack? Part 1

Andrew J. Kobin

akobin@ucsc.edu

January 21, 2021

Introduction

Common problem: all sorts of information is lost when we consider quotient objects and/or singular objects.

Introduction

Solution: Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).

Complex Orbifolds

Definition

A **complex orbifold** is a topological space admitting an atlas $\{U_i\}$ where each $U_i \cong \mathbb{C}^n/G_i$ for a finite group G_i , satisfying compatibility conditions (think: manifold atlas but with extra info).

Algebraic Stacks

There's also a version of orbifold in algebraic geometry: an **algebraic stack**.

One important class of examples (Deligne–Mumford stacks) can be viewed as smooth varieties or schemes with a finite automorphism group attached at each point.

Running Example

Example

The (compactifed) moduli space of complex elliptic curves is a stacky $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$ with a generic $\mathbb{Z}/2$ and a special $\mathbb{Z}/4$ and $\mathbb{Z}/6$.

We will delve further into this example in a bit.

For now: "algebraic objects can be parametrized algebraically", but we should keep track of automorphisms (e.g. to count properly!)

Loosely, a moduli problem is of the form "classify all objects of a certain type" admitting some natural geometric structure.

Loosely, a moduli problem is of the form "classify all objects of a certain type" admitting some natural geometric structure.

- circles \longleftrightarrow radius + center
- circles up to isometry \leftrightarrow radius
- lines through the origin \longleftrightarrow unit vector / \pm
- subspaces of a vector space \leftrightarrow *r*-frame / invertible matrix
- hyperbolic structures on $\Sigma_g \longleftrightarrow 6g 6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

More precisely, a moduli problem takes the form of a functor $P: \mathtt{Schemes} \to \mathtt{Sets}.$

We say *P* is **representable** if P(X) = Hom(X, M) for some space *M* – called a **moduli space** for *P*.

More precisely, a moduli problem takes the form of a functor $P: \mathtt{Schemes} \to \mathtt{Sets}.$

We say *P* is representable if P(X) = Hom(X, M) for some space *M* – called a moduli space for *P*.

- circles \longleftrightarrow radius + center
- circles up to isometry \longleftrightarrow radius
- $\bullet\,$ lines through the origin \longleftrightarrow unit vector / $\pm\,$
- subspaces of a vector space \leftrightarrow *r*-frame / invertible matrix
- hyperbolic structures on $\Sigma_g \longleftrightarrow 6g 6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

More precisely, a moduli problem takes the form of a functor $P: \mathtt{Schemes} \to \mathtt{Sets}.$

We say *P* is representable if P(X) = Hom(X, M) for some space *M* – called a moduli space for *P*.

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^2$
- circles up to isometry \longleftrightarrow radius
- $\bullet\,$ lines through the origin \longleftrightarrow unit vector / $\pm\,$
- subspaces of a vector space \leftrightarrow *r*-frame / invertible matrix
- hyperbolic structures on $\Sigma_g \longleftrightarrow 6g 6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

More precisely, a moduli problem takes the form of a functor $P: \mathtt{Schemes} \to \mathtt{Sets}.$

We say *P* is representable if P(X) = Hom(X, M) for some space *M* – called a moduli space for *P*.

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^2$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- $\bullet\,$ lines through the origin \longleftrightarrow unit vector / $\pm\,$
- subspaces of a vector space \leftrightarrow *r*-frame / invertible matrix
- hyperbolic structures on $\Sigma_g \longleftrightarrow 6g 6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

More precisely, a moduli problem takes the form of a functor $P: \mathtt{Schemes} \to \mathtt{Sets}.$

We say *P* is representable if P(X) = Hom(X, M) for some space *M* – called a moduli space for *P*.

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^2$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- $\bullet\,$ lines through the origin $\longleftrightarrow \mathbb{P}^1_{\mathbb{R}}$
- subspaces of a vector space \leftrightarrow *r*-frame / invertible matrix
- hyperbolic structures on $\Sigma_g \longleftrightarrow 6g 6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

More precisely, a moduli problem takes the form of a functor $P: \mathtt{Schemes} \to \mathtt{Sets}.$

We say *P* is representable if P(X) = Hom(X, M) for some space *M* – called a moduli space for *P*.

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^2$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- $\bullet\,$ lines through the origin $\longleftrightarrow \mathbb{P}^1_{\mathbb{R}}$
- subspaces of a vector space $\longleftrightarrow \operatorname{Gr}(r, n)$
- hyperbolic structures on $\Sigma_g \longleftrightarrow 6g 6$ coordinates
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

More precisely, a moduli problem takes the form of a functor $P: \mathtt{Schemes} \to \mathtt{Sets}.$

We say *P* is representable if P(X) = Hom(X, M) for some space *M* – called a moduli space for *P*.

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^2$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- $\bullet\,$ lines through the origin $\longleftrightarrow \mathbb{P}^1_{\mathbb{R}}$
- subspaces of a vector space $\longleftrightarrow \operatorname{Gr}(r, n)$
- hyperbolic structures on $\Sigma_g \longleftrightarrow \mathbb{R}^{6g-6}$
- lines on a cubic surface \longleftrightarrow there are exactly 27
- more examples?

More precisely, a moduli problem takes the form of a functor $P: \mathtt{Schemes} \to \mathtt{Sets}.$

We say *P* is representable if P(X) = Hom(X, M) for some space *M* – called a moduli space for *P*.

- circles $\longleftrightarrow \mathbb{R}_{>0} \times \mathbb{R}^2$
- circles up to isometry $\longleftrightarrow \mathbb{R}_{>0}$
- lines through the origin $\longleftrightarrow \mathbb{P}^1_{\mathbb{R}}$
- subspaces of a vector space $\longleftrightarrow \operatorname{Gr}(r, n)$
- hyperbolic structures on $\Sigma_g \longleftrightarrow \mathbb{R}^{6g-6}$
- lines on a cubic surface \leftrightarrow zero-dim. variety with 27 points
- more examples?

Many moduli problems are algebraic in nature ("algebraic objects classified algebraically").

Example

The solutions to a polynomial equation $f(x_1, ..., x_n) = 0$ correspond to the points of an *algebraic variety*:

Many moduli problems are algebraic in nature ("algebraic objects classified algebraically").

Example

The solutions to a polynomial equation $f(x_1, ..., x_n) = 0$ correspond to the points of an *algebraic variety*:

Many moduli problems are algebraic in nature ("algebraic objects classified algebraically").

Example

The solutions to a polynomial equation $f(x_1, ..., x_n) = 0$ correspond to the points of an *algebraic variety*:

$$x^2 + y^2 - z - 1 = 0$$

Many moduli problems are algebraic in nature ("algebraic objects classified algebraically").

Example

The moduli problem of finding *r*-dimensional subspaces of an *n*-dimensional vector space *V* is *represented* by a variety Gr(r, n) called the Grassmannian variety

e.g. $\operatorname{Gr}(1, n) = \mathbb{P}^n$, projective *n*-space.

An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a *Weierstrass* equation $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{C}$.

An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a *Weierstrass* equation $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{C}$.

An **elliptic curve** is a 1-dimensional complex manifold *E* (a *Riemann surface*) of genus 1 together with a specified basepoint *O*.

Fact: Every complex elliptic curve can be described by a *Weierstrass* equation $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{C}$.

 $y^2 = x^3 - x$

An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a *Weierstrass* equation $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{C}$.

An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a *Weierstrass* equation $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{C}$.

To classify elliptic curves, we define an invariant

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2} \in \mathbb{C}.$$

Theorem

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

Corollary

The affine *j*-line $\mathbb{A}_j^1 := \mathbb{C}$ is a moduli space for isomorphism classes of elliptic curves.

$$E: y^2 = x^3 + Ax + B, \quad j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

Corollary

The affine *j*-line $\mathbb{A}_j^1 := \mathbb{C}$ is a moduli space for isomorphism classes of elliptic curves.

https://www.desmos.com/calculator/ialhd71we3

A family of elliptic curves over a complex manifold *X* is a holomorphic map $E \to X$ whose fibres are elliptic curves (and the distinguished points are picked out by a holomorphic section $O: X \to E$).

Let $\mathscr{M}_{1,1}(X)$ denote the set of isomorphism classes of (families of) elliptic curves over X. For any holomorphic map $Y \to X$, we get a map $\mathscr{M}_{1,1}(X) \to \mathscr{M}_{1,1}(Y)$ defined by pullback:

That is, $\mathcal{M}_{1,1}$ defines a functor CxMfld^{op} \rightarrow Set.

Question: Is $\mathcal{M}_{1,1}$: CxMfld^{op} \rightarrow Set *representable*? That is, $\mathcal{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$ for a complex manifold M?

Question: Is $\mathscr{M}_{1,1}$: CxMfld^{op} \rightarrow Set *representable*? That is, $\mathscr{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$ for a complex manifold M?

Answer: Unfortunately, no. If there was, there would be a "universal elliptic curve" $E_0 \in \mathcal{M}_{1,1}(M)$ corresponding to $id_M \in \operatorname{Hom}(M, M)$ such that every elliptic curve $E \to X$ would be a pullback

However, no map $\tilde{f}: E \to E_0$ is unique: every elliptic curve $E: y^2 = x^3 + Ax + B$ has a nontrivial degree 2 automorphism $(x, y) \mapsto (x, -y)$. Further, if j(E) = 0 or 1728, $\operatorname{Aut}(E)$ is even larger.

Question: Is $\mathscr{M}_{1,1}$: CxMfld^{op} \rightarrow Set *representable*? That is, $\mathscr{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$ for a complex manifold M?

Partial Answer: The *j*-line \mathbb{A}_{j}^{1} is a *coarse moduli space* for the moduli problem of elliptic curves. That is:

- there is a bijection $\mathscr{M}_{1,1}(*) \cong \operatorname{Hom}(*, \mathbb{A}^1_j) = \mathbb{C}$; and
- for any other complex manifold M and natural transformation $\mathcal{M}_{1,1}(-) \to \operatorname{Hom}(-, M)$, there is a unique map $\mathbb{A}_j^1 \to M$ making the following diagram commute:

$$\mathcal{M}_{1,1} \longrightarrow \operatorname{Hom}(-, \mathbb{A}_{j}^{1})$$

$$\bigvee_{j}$$

$$\overset{'}{\bigvee}$$

$$\operatorname{Hom}(-, M)$$

Example from Topology

Here's a related example from topology.

Example

Let G be a group and consider the principal G-bundle functor

 $\operatorname{Top} \longrightarrow \operatorname{Set}, \quad X \longmapsto \operatorname{Bun}_G(X) = {\operatorname{principal} G-\operatorname{bundles}}/\operatorname{iso.}$

There is a space BG which classifies G-bundles up to isomorphism:

Example from Topology

Here's a related example from topology.

Example

Let G be a group and consider the principal G-bundle functor

 $\operatorname{Top} \longrightarrow \operatorname{Set}, \quad X \longmapsto \operatorname{Bun}_G(X) = {\operatorname{principal} G-\operatorname{bundles}}/\operatorname{iso.}$

There is a space BG which classifies G-bundles up to isomorphism:

Here, (f, \tilde{f}) are unique up to homotopy, i.e. there is a natural isomorphism $\operatorname{Bun}_G(-) \cong [-, BG]$. Want: unique on the nose.

Example from Topology

Here's a related example from topology.

Example

To fix this, treat *BG* as a *groupoid*

 ${\underbrace{\bullet}} g \in G$

 $\operatorname{Bun}_G(X)$ can also be a viewed as a groupoid (remember the isomorphisms $P \xrightarrow{\sim} P'$ between *G*-bundles over *X*).

Want a natural isomorphism

 $\operatorname{Bun}_G(-) \cong \operatorname{Hom}_{\operatorname{Gpd}}(-, BG)$

A Journey from Schemes to Stacks

The spaces I want to consider can be "described by algebra".

Motivation: Hilbert's Nullstellensatz says that the points of \mathbb{C}^n are in bijection with certain ideals in a polynomial ring:

$$\mathbb{A}^n_{\mathbb{C}} := \mathbb{C}^n \longleftrightarrow \operatorname{MaxSpec} \mathbb{C}[z_1, \dots, z_n]$$
$$P = (\alpha_1, \dots, \alpha_n) \longmapsto \mathfrak{m}_P = (z_1 - \alpha_1, \dots, z_n - \alpha_n).$$

This is the jumping off point for algebraic geometry: for a general commutative ring A, there is a space $\operatorname{Spec} A$ defined by replacing "maximal ideals" with "prime ideals":

- Points of Spec A = prime ideals $\mathfrak{p} \subset A$
- Closed subsets of Spec A = "vanishing sets" $V(I) = \{ \mathfrak{p} \mid I \subseteq \mathfrak{p} \}$
- Sheaf of rings O on Spec A with O(Spec A) ≅ A and stalks ↔ localizations.

A Journey from Schemes to Stacks

Just as manifolds can be glued together from locally trivial patches, schemes are what we get by gluing together spaces built out of rings.

- An *affine scheme* is the space Spec *A* associated to a commutative ring *A*, together with its structure sheaf *O*.
- A *scheme* is a locally ringed space which is locally affine, or can be obtained by "gluing" affine schemes (and their structure sheaves) in a compatible way.

Interlude: "Topology" is Flexible

Important: the gluing must play nicely with the chosen *topology* on $\operatorname{Spec} A$.

e.g. in ordinary topology, a cover $\{U_i \rightarrow X\}$ is a collection of open subsets $U_i \subseteq X$ with $\bigcup U_i = X$.

e.g. in the étale topology, a cover $\{U_i \to X\}$ is a collection of *étale* morphisms $f_i : U_i \to X$ with $\bigcup f_i(U_i) = X$.

 $(f: U \to X \text{ is } \acute{etale}$ if it induces an isomorphism on tangent spaces. That is, étale is the algebraic analogue of local homeomorphism in topology.)

Interlude: "Topology" is Flexible

Important: the gluing must play nicely with the chosen *topology* on $\operatorname{Spec} A$.

e.g. in ordinary topology, a cover $\{U_i \rightarrow X\}$ is a collection of open subsets $U_i \subseteq X$ with $\bigcup U_i = X$.

e.g. in the étale topology, a cover $\{U_i \to X\}$ is a collection of *étale* morphisms $f_i : U_i \to X$ with $\bigcup f_i(U_i) = X$.

 $(f: U \to X \text{ is } \acute{etale}$ if it induces an isomorphism on tangent spaces. That is, étale is the algebraic analogue of local homeomorphism in topology.)

More on this next time ...

To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps $T \to X$ from all other objects T.

To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps $T \to X$ from all other objects T.

To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps $T \to X$ from all other objects T.

To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps $T \to X$ from all other objects T.

Example

Let *X* be a plane curve given by the equation $y^2 - x = 0$.

When $T = \operatorname{Spec} A$, $X(T) = \{$ solutions to $y^2 - x = 0 \text{ over } A \}.$

In other words, X determines a functor $X : \texttt{AffSch}^{op} \to \texttt{Set}$.

So every scheme X is like a moduli problem (super interesting in general: what do its points classify?)

Like we did with moduli problems, what happens if we instead have a functor $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$ with values in the category of *groupoids*.

Definition

A stack is a functor $\mathcal{X} : \operatorname{AffSch}^{op} \to \operatorname{Gpd}$ satisfying *descent*: for any étale cover^{*} $\{U_i \to T\}$, the objects/morphisms of $\mathcal{X}(T)$ correspond bijectively to compatible objects/morphisms of $\{\mathcal{X}(U_i)\}$.

Definition

A stack is a functor $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$ satisfying *descent*.

Example

For our plane curve $X:y^2-x=0,$ groupoids remember automorphisms like $(x,y)\leftrightarrow (x,-y)$

Example

Let Y be a scheme and G be a group acting on Y. This determines a quotient stack [Y/G]: AffSch^{op} \rightarrow Gpd defined by

$$[Y/G](T) = \left\{ \begin{array}{c} P \xrightarrow{f} Y \\ p \\ p \\ T \end{array} \right\}$$

where $p: P \to T$ is a principal *G*-bundle and $f: P \to Y$ is *G*-equivariant.

Example

Let Y be a scheme and G be a group acting on Y. This determines a quotient stack [Y/G]: AffSch^{op} \rightarrow Gpd defined by

$$[Y/G](T) = \left\{ \begin{array}{c} P \xrightarrow{f} Y \\ p \\ p \\ T \end{array} \right\}$$

where $p: P \to T$ is a principal *G*-bundle and $f: P \to Y$ is *G*-equivariant.

Exercise: Why is this the right notion of quotient?

Example

The classifying stack of a group G is the stack $BG:\mathtt{AffSch}^{op}\to\mathtt{Gpd}$ defined by

BG(T) = the groupoid of principal *G*-bundles $P \rightarrow T$.

Example

The classifying stack of a group G is the stack $BG:\mathtt{AffSch}^{op}\to\mathtt{Gpd}$ defined by

BG(T) = the groupoid of principal *G*-bundles $P \rightarrow T$.

Alternatively, $BG = [\bullet/G]$ and the universal *G*-bundle from topology is replaced by:

Next Time

Next time, we will:

- Get a better idea of étale covers and descent
- See more examples of stacks
- Talk more about elliptic curves
- Show that the elliptic curve moduli problem $\mathcal{M}_{1,1}$ is (represented by) a stack
- Cast a sideways glance at moduli spaces of other things (higher genus curves, abelian varieties, ??)

Thank you!

https://www.desmos.com/calculator/ialhd71we3