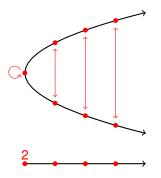
What is a Stack? Part 2

Andrew J. Kobin

akobin@ucsc.edu

April 8, 2021

Our goal was to keep track of extra geometric information (e.g. nontrivial automorphisms, quotient data) using stacks.



More precisely, we considered **moduli problems** as functors $P: Schemes \rightarrow Gpd$ and asked if they were representable by a **moduli space** M:

 $P(-) \cong \operatorname{Hom}(-, M)$

or something more general...

More precisely, we considered **moduli problems** as functors $P: \text{Schemes} \to \text{Gpd}$ and asked if they were representable by a **moduli space** M:

 $P(-) \cong \operatorname{Hom}(-, M)$

or something more general...

...such as:

Definition

A stack is a functor $\mathcal{X} : \operatorname{AffSch}^{op} \to \operatorname{Gpd}$ satisfying *descent*: for any étale cover* $\{U_i \to T\}$, the objects/morphisms of $\mathcal{X}(T)$ correspond bijectively to compatible objects/morphisms of $\{\mathcal{X}(U_i)\}$.

Definition

A **stack** is a functor $\mathcal{X} : \operatorname{AffSch}^{op} \to \operatorname{Gpd}$ satisfying *descent*: for any étale cover^{*} $\{U_i \to T\}$, the objects/morphisms of $\mathcal{X}(T)$ correspond bijectively to compatible objects/morphisms of $\{\mathcal{X}(U_i)\}$.

More about étale covers and descent in a moment, but recall the following key examples:

Example

Quotient stacks [Y/G], for a group G acting on a scheme Y.

Example

The classifying stack $BG = [\bullet/G]$ of a group.

Example

Let Y be a scheme and G be a group acting on Y. This determines a quotient stack $[Y/G]: \tt{AffSch}^{op} \to \tt{Gpd}$ defined by

$$[Y/G](T) = \begin{cases} P \xrightarrow{f} Y \\ p \\ T \\ T \end{cases}$$

where $p: P \to T$ is a principal *G*-bundle and $f: P \to Y$ is *G*-equivariant.

Example

The classifying stack of a group G is the stack $BG:\mathtt{AffSch}^{op}\to\mathtt{Gpd}$ defined by

BG(T) = the groupoid of principal *G*-bundles $P \rightarrow T$.

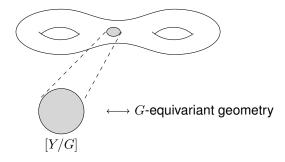
Example

The classifying stack of a group G is the stack $BG:\mathtt{AffSch}^{op}\to\mathtt{Gpd}$ defined by

BG(T) = the groupoid of principal *G*-bundles $P \rightarrow T$.

Alternatively, $BG = [\bullet/G]$ and the universal *G*-bundle from topology is replaced by:

Super Important Fact: Many classes of stacks are locally quotient stacks.



One of the difficult (= fun) parts of algebraic geometry is to translate useful concepts from topology and differential geometry into algebra. For example:

- The tangent space to a scheme X at a point x ∈ X is the dual vector space T_xX = (m_x/m_x²)*.
- A map $f: Y \to X$ of schemes is **smooth** if it is finite, flat and each fibre $Y_x = Y \times_X \{x\}$ is **regular**, i.e. $\dim Y_x = \dim T_y Y_x$ for all $y \in Y_x$.
- A smooth map $f: Y \to X$ is étale if each dim $Y_x = 0$.

Loosely, étale morphisms are the algebro-geometric analogues of local homeomorphisms in differential geometry.

Étale Morphisms

Example

When $X = \mathbb{A}^n = \operatorname{Spec} k[t_1, \dots, t_n]$ is affine *n*-space, $x = (\alpha_1, \dots, \alpha_n)$,

- $T_x \mathbb{A}^n = \operatorname{Span}_k \left\{ \frac{\partial}{\partial (t_i \alpha_i)} \right\}_{i=1}^n$ which has dim. n, so \mathbb{A}^n is regular.
- The structure map $\mathbb{A}^n \to *$ is smooth.

Étale Morphisms

Example

When $X = \mathbb{A}^n = \operatorname{Spec} k[t_1, \dots, t_n]$ is affine *n*-space, $x = (\alpha_1, \dots, \alpha_n)$,

•
$$T_x \mathbb{A}^n = \operatorname{Span}_k \left\{ \frac{\partial}{\partial (t_i - \alpha_i)} \right\}_{i=1}^n$$
 which has dim. n , so \mathbb{A}^n is regular.

• The structure map $\mathbb{A}^n \to *$ is smooth.

More generally:

Proposition

Every smooth map $Y \to X$ factors locally as

$$Y \xrightarrow{f} \mathbb{A}^n_X \to X$$

where $\mathbb{A}^n_X := \mathbb{A}^n \times_k X$ and f is étale.

Étale Covers

Loosely, étale morphisms are the algebro-geometric analogues of local homeomorphisms in differential geometry.

You can even build *covering spaces* out of them! An **étale cover** is a surjective étale map $f: Y \to X$.

There's even an **étale fundamental group** $\pi_1(X, x)$ that acts very much like the topological fundamental group of a manifold.

Étale Covers

Loosely, étale morphisms are the algebro-geometric analogues of local homeomorphisms in differential geometry.

You can even build *covering spaces* out of them! An **étale cover** is a surjective étale map $f: Y \to X$.

There's even an **étale fundamental group** $\pi_1(X, x)$ that acts very much like the topological fundamental group of a manifold.

Example

When $X = \operatorname{Spec} k$, étale covers are $\coprod \operatorname{Spec} L_i \to \operatorname{Spec} k$ where L_i/k are finite separable extensions. Hence $\pi_1(\operatorname{Spec} k) = \operatorname{Gal}(k^{sep}/k)$.

Étale Descent

Returning to our moduli problem context, recall:

Definition

A **stack** is a functor $\mathcal{X} : \operatorname{AffSch}^{op} \to \operatorname{Gpd}$ satisfying *descent*: for any étale cover^{*} $\{U_i \to T\}$, the objects/morphisms of $\mathcal{X}(T)$ correspond bijectively to compatible objects/morphisms of $\{\mathcal{X}(U_i)\}$.

Étale Descent

Definition

A stack is a functor $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$ satisfying *descent*.

More rigorously, for an affine scheme T and a collection of étale maps $\{U_i \to T\}$ such that $\coprod U_i \to T$ is surjective, define a category $\mathcal{X}(\{U_i \to T\})$ with:

• objects: $(\{u_i\}, \{\sigma_{ij}\})$ where $u_i \in \mathcal{X}(U_i)$ and $\sigma_{ij} : u_i \xrightarrow{\sim} u_j$ satisfying $\sigma_{ik} = \sigma_{jk}\sigma_{ij}$ for all i, j, k

• morphisms: $\{u'_i \rightarrow u_i\}$ commuting with the σ_{ij} .

We say \mathcal{X} satisfies **étale descent** if for every such $\{U_i \to T\}$, the natural morphism $\mathcal{X}(T) \to \mathcal{X}(\{U_i \to T\})$ is an equivalence of categories (groupoids).

Étale Descent

Definition

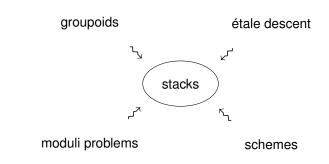
A stack is a functor $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$ satisfying *descent*.

Takeaway: stacks are groupoid-valued functors (usually moduli problems) that have a local-global principle: data on étale "neighborhoods" $U_i \rightarrow T$ glues together to give data on all of T.

Summary

Definition

A **stack** is a functor $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$ satisfying *descent*.



Important Fact: For every scheme X, its functor of points

```
X(-): \texttt{AffSch}^{op} \to \texttt{Gpd}
```

is a stack. (Can you see why?)

Remember that X(T) = Hom(T, X).

Representability

Important Fact: For every scheme X, X(-) = Hom(-, X): AffSch^{op} \rightarrow Gpd is a stack.

Definition

A functor \mathcal{X} is **representable** if there is a natural isomorphism $\mathcal{X} \cong X(-)$ for a scheme X.

So a moduli problem \mathscr{M} is *representable* when $\mathscr{M} \cong \operatorname{Hom}(-, M)$ for a scheme M, called a *fine moduli space*.

If \mathscr{M} is not representable by a scheme, we can still ask for it to be (represented by) a stack.

Example

For a group G, $\operatorname{Bun}_G(-)$: AffSch^{op} \to Gpd is represented by a stack: $\operatorname{Bun}_G(-) \cong \operatorname{Hom}(-, BG).$

G-Bundles Revisited

Example

For a group G, let $\operatorname{Bun}_G(-)$: AffSch^{op} \to Gpd be the moduli problem

 $\operatorname{Bun}_G(T)$ = the groupoid of principal *G*-bundles over *T*.

(These are sometimes called *G*-torsors in algebraic geometry.)

Fact: Bun_{*G*}(-) is a stack but is not (representable by) a scheme.

G-Bundles Revisited

Example

For a group G, let $\operatorname{Bun}_G(-)$: AffSch^{op} \to Gpd be the moduli problem

 $\operatorname{Bun}_G(T)$ = the groupoid of principal *G*-bundles over *T*.

(These are sometimes called *G*-torsors in algebraic geometry.)

Fact: Bun_{*G*}(-) is a stack but is not (representable by) a scheme.

Proof: $Bun_G(-) \cong Hom(-, BG)$. However, it is not representable by a scheme, by a similar proof to the elliptic curves example.

Elliptic Curves Revisited

Let $\mathscr{M}_{1,1}: \mathtt{AffSch}^{op} \to \mathtt{Gpd}$ be the moduli problem of elliptic curves,

 $\mathcal{M}_{1,1}(T) = \text{groupoid of morphisms } C \to T, \text{ fibres} = \text{ell. curves.}$

We saw that $\mathcal{M}_{1,1}$ is not represented by a scheme (well, a cx mfld but the same proof works). However:

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

Elliptic Curves Revisited

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

Elliptic Curves Revisited

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

Proof.

• Let $\{U_i \rightarrow T\}$ be an étale covering.

Elliptic Curves Revisited

Theorem

```
\mathscr{M}_{1,1}: \texttt{AffSch}^{op} 
ightarrow \texttt{Gpd} is a stack.
```

- Let $\{U_i \rightarrow T\}$ be an étale covering.
- The functor $\mathscr{M}_{1,1}(T) \to \mathscr{M}_{1,1}(\{U_i \to T\})$ sends an elliptic curve $E \to T$ to the data $(\{E_i\}, \{\sigma_{ij}\})$ where $E_i = E \times_T U_i \to U_i$ and $\sigma_{ij} : E_i \xrightarrow{\sim} E_j$ are compatible isomorphisms, i.e. $\sigma_{ik} = \sigma_{jk}\sigma_{ij}$.

Elliptic Curves Revisited

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

- Let $\{U_i \rightarrow T\}$ be an étale covering.
- The functor $\mathscr{M}_{1,1}(T) \to \mathscr{M}_{1,1}(\{U_i \to T\})$ sends an elliptic curve $E \to T$ to the data $(\{E_i\}, \{\sigma_{ij}\})$ where $E_i = E \times_T U_i \to U_i$ and $\sigma_{ij} : E_i \xrightarrow{\sim} E_j$ are compatible isomorphisms, i.e. $\sigma_{ik} = \sigma_{jk}\sigma_{ij}$.
- This is an equivalence of categories because for any such data $(\{E_i\}, \{\sigma_{ij}\})$, the σ_{ij} allow us to glue the E_i into a scheme $E \rightarrow T$; one can check E is elliptic.

Elliptic Curves Revisited

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

- Let $\{U_i \rightarrow T\}$ be an étale covering.
- The functor $\mathscr{M}_{1,1}(T) \to \mathscr{M}_{1,1}(\{U_i \to T\})$ sends an elliptic curve $E \to T$ to the data $(\{E_i\}, \{\sigma_{ij}\})$ where $E_i = E \times_T U_i \to U_i$ and $\sigma_{ij} : E_i \xrightarrow{\sim} E_j$ are compatible isomorphisms, i.e. $\sigma_{ik} = \sigma_{jk}\sigma_{ij}$.
- This is an equivalence of categories because for any such data $(\{E_i\}, \{\sigma_{ij}\})$, the σ_{ij} allow us to glue the E_i into a scheme $E \rightarrow T$; one can check E is elliptic.
- (Morphisms are similar: local data glues together along the σ_{ij} .)

Elliptic Curves Revisited

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

- Let $\{U_i \rightarrow T\}$ be an étale covering.
- The functor $\mathscr{M}_{1,1}(T) \to \mathscr{M}_{1,1}(\{U_i \to T\})$ sends an elliptic curve $E \to T$ to the data $(\{E_i\}, \{\sigma_{ij}\})$ where $E_i = E \times_T U_i \to U_i$ and $\sigma_{ij} : E_i \xrightarrow{\sim} E_j$ are compatible isomorphisms, i.e. $\sigma_{ik} = \sigma_{jk}\sigma_{ij}$.
- This is an equivalence of categories because for any such data $(\{E_i\}, \{\sigma_{ij}\})$, the σ_{ij} allow us to glue the E_i into a scheme $E \rightarrow T$; one can check E is elliptic.
- (Morphisms are similar: local data glues together along the σ_{ij} .)
- Therefore $\mathcal{M}_{1,1}$ satisfies étale descent.

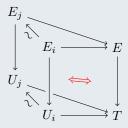
Elliptic Curves Revisited

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

Proof.

Or:



Elliptic Curves Revisited

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

Elliptic Curves Revisited

Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op}
ightarrow \texttt{Gpd}$ is a stack.

More interesting: $\mathcal{M}_{1,1}$ is an *algebraic stack*, meaning it admits a smooth surjection $X \to \mathcal{M}_{1,1}$ from a scheme *X*.

Recall that every elliptic curve admits a Weierstrass equation

$$y^2 = x^3 + Ax + B.$$

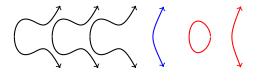
Let $X = \operatorname{Spec} k[x, y, A, B]$. To get a map $X \to \mathcal{M}_{1,1}$, it is equivalent to specify an elliptic curve over X:

$$E = \operatorname{Spec}(k[x, y, A, B]/(y^2 - x^3 - Ax - B)) \longrightarrow X.$$

One can check that, away from $\Delta := -16(4A^3 + 27B^2) = 0$, $X \to \mathcal{M}_{1,1}$ is a smooth surjection.

Elliptic Curves Revisited

Next: let's explore the geometry of the stack $\mathcal{M}_{1,1}$.



In set theory, a point is rigid: it's just a one-element set $\{x\}$.

In topology, a point could be: a set-theoretic point OR a contractible space (a pt. up to homotopy).

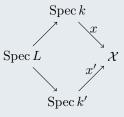
In algebraic geometry, points come in many different flavors:

- For any field k, the underlying space of Spec k is a point. Field extensions L/k ←→ nontrivial maps of points Spec L → Spec k.
- (Nilpotents are invisible) The underlying space of $\operatorname{Spec} k[x]/(x^2)$ is also a point, but $k[x]/(x^2) \not\cong k$ so the respective schemes are distinct.
- (Points can be dense) If *A* is an integral domain with fraction field *K*, the image of the corresponding map $\operatorname{Spec} K \hookrightarrow \operatorname{Spec} A$ is called the *generic point* of $\operatorname{Spec} A$. It is dense in the topology on $\operatorname{Spec} A$.

The Point(s) of Stacks

Definition

A **point** of a scheme *X* is an equivalence class of morphisms $x : \operatorname{Spec} k \to X$, where *k* is a field, and where two points $x : \operatorname{Spec} k \to X$ and $x' : \operatorname{Spec} k' \to X$ are equivalent if there exists a field $L \supseteq k, k'$ making the following commute:



The Point(s) of Stacks

Replacing the scheme X with a stack \mathcal{X} yields the same definition.

Definition

The **automorphism group** of a point $x : \operatorname{Spec} k \to \mathcal{X}$ of a stack \mathcal{X} is the pullback $\operatorname{Aut}(x)$ in the diagram

$$\begin{array}{c} \operatorname{Aut}(x) \longrightarrow \operatorname{Spec} k \\ \downarrow & \downarrow (x, x) \\ \mathcal{X} \xrightarrow{\Delta_{\mathcal{X}}} \mathcal{X} \times \mathcal{X} \end{array}$$

A stacky point of \mathcal{X} is a point with $Aut(x) \neq 1$.

The Moduli Stack M_{1,1}

Proposition

Let *E* be an elliptic curve over \mathbb{C} . Then Aut(E) is a finite cyclic group, and more specifically,

Aut(E) =
$$\begin{cases} \mathbb{Z}/6\mathbb{Z}, & \text{if } j(E) = 0\\ \mathbb{Z}/4\mathbb{Z}, & \text{if } j(E) = 1728 = 12^3\\ \mathbb{Z}/2\mathbb{Z}, & \text{if } j(E) \neq 0, 1728. \end{cases}$$

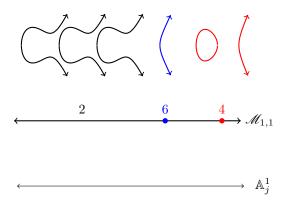
Theorem

Let $\mathcal{M}_{1,1}$ be the moduli stack of elliptic curves. Then $\mathcal{M}_{1,1}$ is a "stacky" \mathbb{A}^1 with automorphism group $\mathbb{Z}/2\mathbb{Z}$ at every point except two, which have automorphism groups $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$. Further, there is a map $\mathcal{M}_{1,1} \to \mathbb{A}^1_j$ which is a bijection on geometric points and is universal with respect to maps $\mathcal{M}_{1,1} \to M$ where M is a scheme.

Moduli of Curves

The Moduli Stack $M_{1,1}$

That is, $\mathcal{M}_{1,1}$ looks like



The Moduli Stack $\mathcal{M}_{1,1}$

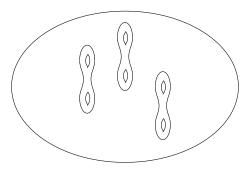
Utility of $\mathcal{M}_{1,1}$ over \mathbb{A}_j^1 :

- Stores info about automorphisms that may even be invisible over subfields of \mathbb{C} , e.g. \mathbb{Q} .
- Classical objects (e.g. modular forms) have geometric interpretation over a nice compactification $\overline{\mathscr{M}}_{1,1}$ (e.g. as sections of line bundles), vs. ad hoc and awkward interpretation over $\mathbb{P}_j^1 = \overline{\mathbb{A}_j^1}$.
- Counting formulas with fractional coefficients "come from geometry".
- Accommodates extra structure like level structure (elliptic curves with torsion), polarizations, etc.
- "Lifts to topology" as a spectral (Deligne–Mumford) stack, leading to topological modular forms.

Higher Genus Curves

All of this generalizes to curves of genus $g \ge 2$:

Let \mathcal{M}_g be the moduli functor sending $T \mapsto$ the groupoid of families of curves $C \to T$ with genus g fibres.



Over \mathbb{C} , this is equivalent to the groupoid of families of Riemann surfaces of genus g.

Higher Genus Curves

Quick facts about \mathcal{M}_g for $g \geq 2$:

- *M_g* is a (Deligne–Mumford) stack that is, once again, not representable by a scheme.
- But it has a coarse moduli space M_g which has been well-studied.
- dim $\mathcal{M}_g = \dim M_g = 3g 3$ (compare to hyperbolic geometry).
- Marked version has deep ties to number theory, e.g. $\chi(\mathscr{M}_{g,1}) = \zeta(1-2g)$.

Higher Genus Curves

In fact, the formula $\chi(\mathscr{M}_{g,1})=\zeta(1-2g)$ (due to Harer–Zagier) holds even for g=1:

$$\chi(\mathcal{M}_{1,1}) = \zeta(-1) = \frac{1}{12}$$

Here, we are using orbifold Euler characteristic:

$$\chi(\mathscr{M}) = |V| - |E| + |F| = \sum_{v \in V} \frac{1}{|\operatorname{Aut}(v)|} - \sum_{e \in E} \frac{1}{|\operatorname{Aut}(e)|} + |F|$$

Thank you!

https://www.desmos.com/calculator/ialhd71we3