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Recap

Our goal was to keep track of extra geometric information
(e.g. nontrivial automorphisms, quotient data) using stacks.
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Recap

More precisely, we considered moduli problems as functors
P : Schemes→ Gpd and asked if they were representable by a moduli
space M :

P (−) ∼= Hom(−,M)

or something more general...

...such as:

Definition
A stack is a functor X : AffSchop → Gpd satisfying descent: for any
étale cover∗ {Ui → T}, the objects/morphisms of X (T ) correspond
bijectively to compatible objects/morphisms of {X (Ui)}.
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Definition
A stack is a functor X : AffSchop → Gpd satisfying descent: for any
étale cover∗ {Ui → T}, the objects/morphisms of X (T ) correspond
bijectively to compatible objects/morphisms of {X (Ui)}.

More about étale covers and descent in a moment, but recall the
following key examples:

Example

Quotient stacks [Y/G], for a group G acting on a scheme Y .

Example

The classifying stack BG = [•/G] of a group.



Recap Descent Moduli of Curves

Recap

Example

Let Y be a scheme and G be a group acting on Y . This determines a
quotient stack [Y/G] : AffSchop → Gpd defined by

[Y/G](T ) =


P Y

T

f

p


where p : P → T is a principal G-bundle and f : P → Y is
G-equivariant.
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Example

The classifying stack of a group G is the stack BG : AffSchop → Gpd

defined by

BG(T ) = the groupoid of principal G-bundles P → T.

Alternatively, BG = [•/G] and the universal G-bundle from topology is
replaced by:

P •

T BG
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Recap (not really)

Super Important Fact: Many classes of stacks are locally quotient
stacks.

[Y/G]

G-equivariant geometry
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Étale Morphisms

One of the difficult (= fun) parts of algebraic geometry is to translate
useful concepts from topology and differential geometry into algebra.
For example:

The tangent space to a scheme X at a point x ∈ X is the dual
vector space TxX = (mx/m

2
x)∗.

A map f : Y → X of schemes is smooth if it is finite, flat and
each fibre Yx = Y ×X {x} is regular, i.e. dimYx = dimTyYx for
all y ∈ Yx.

A smooth map f : Y → X is étale if each dimYx = 0.

Loosely, étale morphisms are the algebro-geometric analogues of
local homeomorphisms in differential geometry.
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Étale Morphisms

Example

When X = An = Spec k[t1, . . . , tn] is affine n-space, x = (α1, . . . , αn),

TxAn = Spank

{
∂

∂(ti−αi)

}n
i=1

which has dim. n, so An is regular.

The structure map An → ∗ is smooth.

More generally:

Proposition

Every smooth map Y → X factors locally as

Y
f−→ AnX → X

where AnX := An ×k X and f is étale.
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Étale Covers

Loosely, étale morphisms are the algebro-geometric analogues of
local homeomorphisms in differential geometry.

You can even build covering spaces out of them! An étale cover is a
surjective étale map f : Y → X.

There’s even an étale fundamental group π1(X,x) that acts very
much like the topological fundamental group of a manifold.

Example

When X = Spec k, étale covers are
∐

SpecLi → Spec k where Li/k
are finite separable extensions. Hence π1(Spec k) = Gal(ksep/k).



Recap Descent Moduli of Curves

Étale Covers

Loosely, étale morphisms are the algebro-geometric analogues of
local homeomorphisms in differential geometry.

You can even build covering spaces out of them! An étale cover is a
surjective étale map f : Y → X.

There’s even an étale fundamental group π1(X,x) that acts very
much like the topological fundamental group of a manifold.

Example

When X = Spec k, étale covers are
∐

SpecLi → Spec k where Li/k
are finite separable extensions. Hence π1(Spec k) = Gal(ksep/k).



Recap Descent Moduli of Curves

Étale Descent

Returning to our moduli problem context, recall:

Definition
A stack is a functor X : AffSchop → Gpd satisfying descent: for any
étale cover∗ {Ui → T}, the objects/morphisms of X (T ) correspond
bijectively to compatible objects/morphisms of {X (Ui)}.
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Étale Descent

Definition
A stack is a functor X : AffSchop → Gpd satisfying descent.

More rigorously, for an affine scheme T and a collection of étale
maps {Ui → T} such that

∐
Ui → T is surjective, define a category

X ({Ui → T}) with:
objects: ({ui}, {σij}) where ui ∈ X (Ui) and σij : ui

∼−→ uj
satisfying σik = σjkσij for all i, j, k
morphisms: {u′i → ui} commuting with the σij .

We say X satisfies étale descent if for every such {Ui → T}, the
natural morphism X (T )→ X ({Ui → T}) is an equivalence of
categories (groupoids).
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Étale Descent

Definition
A stack is a functor X : AffSchop → Gpd satisfying descent.

Takeaway: stacks are groupoid-valued functors (usually moduli
problems) that have a local-global principle: data on étale
“neighborhoods” Ui → T glues together to give data on all of T .
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Summary

Definition
A stack is a functor X : AffSchop → Gpd satisfying descent.

stacks

groupoids étale descent

moduli problems schemes
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Representability

Important Fact: For every scheme X, its functor of points

X(−) : AffSchop → Gpd

is a stack. (Can you see why?)

Remember that X(T ) = Hom(T,X).
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Representability

Important Fact: For every scheme X,
X(−) = Hom(−, X) : AffSchop → Gpd is a stack.

Definition
A functor X is representable if there is a natural isomorphism
X ∼= X(−) for a scheme X.

So a moduli problem M is representable when M ∼= Hom(−,M) for
a scheme M , called a fine moduli space.

If M is not representable by a scheme, we can still ask for it to be
(represented by) a stack.

Example

For a group G, BunG(−) : AffSchop → Gpd is represented by a stack:
BunG(−) ∼= Hom(−, BG).
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G-Bundles Revisited

Example

For a group G, let BunG(−) : AffSchop → Gpd be the moduli problem

BunG(T ) = the groupoid of principal G-bundles over T .

(These are sometimes called G-torsors in algebraic geometry.)

Fact: BunG(−) is a stack but is not (representable by) a scheme.

Proof: BunG(−) ∼= Hom(−, BG). However, it is not representable by a
scheme, by a similar proof to the elliptic curves example.
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Elliptic Curves Revisited

Let M1,1 : AffSchop → Gpd be the moduli problem of elliptic curves,

M1,1(T ) = groupoid of morphisms C → T , fibres = ell. curves.

We saw that M1,1 is not represented by a scheme (well, a cx mfld but
the same proof works). However:

Theorem
M1,1 : AffSchop → Gpd is a stack.
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Elliptic Curves Revisited

Theorem
M1,1 : AffSchop → Gpd is a stack.

Proof.

Let {Ui → T} be an étale covering.
The functor M1,1(T )→M1,1({Ui → T}) sends an elliptic curve
E → T to the data ({Ei}, {σij}) where Ei = E ×T Ui → Ui and
σij : Ei

∼−→ Ej are compatible isomorphisms, i.e. σik = σjkσij .
This is an equivalence of categories because for any such data
({Ei}, {σij}), the σij allow us to glue the Ei into a scheme
E → T ; one can check E is elliptic.
(Morphisms are similar: local data glues together along the σij .)
Therefore M1,1 satisfies étale descent.
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Elliptic Curves Revisited

Theorem
M1,1 : AffSchop → Gpd is a stack.

Proof.
Or:

Ei E

Ui T

Ej

Uj

∼

∼
⇐⇒
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Elliptic Curves Revisited

Theorem
M1,1 : AffSchop → Gpd is a stack.

More interesting: M1,1 is an algebraic stack, meaning it admits a
smooth surjection X →M1,1 from a scheme X.

Recall that every elliptic curve admits a Weierstrass equation

y2 = x3 +Ax+B.

Let X = Spec k[x, y,A,B]. To get a map X →M1,1, it is equivalent to
specify an elliptic curve over X:

E = Spec
(
k[x, y,A,B]/(y2 − x3 −Ax−B)

)
−→ X.

One can check that, away from ∆ := −16(4A3 + 27B2) = 0,
X →M1,1 is a smooth surjection.
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Elliptic Curves Revisited

Next: let’s explore the geometry of the stack M1,1.

M1,1



Recap Descent Moduli of Curves

The Point(s) of Stacks

In set theory, a point is rigid: it’s just a one-element set {x}.

In topology, a point could be: a set-theoretic point OR a contractible
space (a pt. up to homotopy).

In algebraic geometry, points come in many different flavors:
For any field k, the underlying space of Spec k is a point. Field
extensions L/k ←→ nontrivial maps of points SpecL→ Spec k.
(Nilpotents are invisible) The underlying space of Spec k[x]/(x2)
is also a point, but k[x]/(x2) 6∼= k so the respective schemes are
distinct.
(Points can be dense) If A is an integral domain with fraction field
K, the image of the corresponding map SpecK ↪→ SpecA is
called the generic point of SpecA. It is dense in the topology on
SpecA.
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The Point(s) of Stacks

Definition
A point of a scheme X is an equivalence class of morphisms
x : Spec k → X, where k is a field, and where two points
x : Spec k → X and x′ : Spec k′ → X are equivalent if there exists a
field L ⊇ k, k′ making the following commute:

SpecL

Spec k

Spec k′

X

x

x′
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The Point(s) of Stacks

Replacing the scheme X with a stack X yields the same definition.

Definition
The automorphism group of a point x : Spec k → X of a stack X is
the pullback Aut(x) in the diagram

Aut(x) Spec k

X X × X

(x, x)

∆X

A stacky point of X is a point with Aut(x) 6= 1.
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The Moduli Stack M1,1

Proposition

Let E be an elliptic curve over C. Then Aut(E) is a finite cyclic group,
and more specifically,

Aut(E) =


Z/6Z, if j(E) = 0

Z/4Z, if j(E) = 1728 = 123

Z/2Z, if j(E) 6= 0, 1728.

Theorem
Let M1,1 be the moduli stack of elliptic curves. Then M1,1 is a
“stacky” A1 with automorphism group Z/2Z at every point except two,
which have automorphism groups Z/4Z and Z/6Z. Further, there is a
map M1,1 → A1

j which is a bijection on geometric points and is
universal with respect to maps M1,1 →M where M is a scheme.
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The Moduli Stack M1,1

That is, M1,1 looks like

M1,1

2 6 4

A1
j
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The Moduli Stack M1,1

Utility of M1,1 over A1
j :

Stores info about automorphisms that may even be invisible over
subfields of C, e.g. Q.
Classical objects (e.g. modular forms) have geometric
interpretation over a nice compactification M 1,1 (e.g. as sections
of line bundles), vs. ad hoc and awkward interpretation over
P1
j = A1

j .
Counting formulas with fractional coefficients “come from
geometry”.
Accommodates extra structure like level structure (elliptic curves
with torsion), polarizations, etc.
“Lifts to topology” as a spectral (Deligne–Mumford) stack, leading
to topological modular forms.
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Higher Genus Curves

All of this generalizes to curves of genus g ≥ 2:

Let Mg be the moduli functor sending T 7→ the groupoid of families of
curves C → T with genus g fibres.

Over C, this is equivalent to the groupoid of families of Riemann
surfaces of genus g.
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Higher Genus Curves

Quick facts about Mg for g ≥ 2:
Mg is a (Deligne–Mumford) stack that is, once again, not
representable by a scheme.

But it has a coarse moduli space Mg which has been
well-studied.

dim Mg = dimMg = 3g − 3 (compare to hyperbolic geometry).

Marked version has deep ties to number theory,
e.g. χ(Mg,1) = ζ(1− 2g).
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Higher Genus Curves

In fact, the formula χ(Mg,1) = ζ(1− 2g) (due to Harer–Zagier) holds
even for g = 1:

χ(M1,1) = ζ(−1) =
1

12
.

Here, we are using orbifold Euler characteristic:

χ(M ) = |V | − |E|+ |F | =
∑
v∈V

1

|Aut(v)|
−
∑
e∈E

1

|Aut(e)|
+ |F |
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Thank you!

https://www.desmos.com/calculator/ialhd71we3

https://www.desmos.com/calculator/ialhd71we3
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