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Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.
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Based on
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as well as work in progress with Jon Aycock.
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Introduction

Motivation: How are different zeta and L-functions related? Do they
fit into a common framework?

motivic L-functions
Zmot(X, t)

local L-functions
Z(X/Fq, t)

arithmetic L-functions
ζQ(s), ζK(s), ζX(s)

motivic measure #q

local factors
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Arithmetic Functions

A good starting place is always with the Riemann zeta function:

ζQ(s) =

∞∑
n=1

1

ns
.
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Arithmetic Functions

This is an example of a Dirichlet series:

F (s) =

∞∑
n=1

f(n)

ns
.

We will focus on the formal properties of Dirichlet series.

The coefficients f(n) assemble into an arithmetic function
f : N→ C. (Think: F is a generating function for f .)

Then ζQ(s) is the Dirichlet series for ζ : n 7→ 1.
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Arithmetic Functions

The space of arithmetic functions A = {f : N→ C} form an algebra
under convolution:

(f ∗ g)(n) =
∑
d|n

f(d)g
(
n
d

)
.

This identifies the algebra of formal Dirichlet series with A:

A←→ DS(Q)

f 7−→ F (s) =

∞∑
n=1

f(n)

ns

f ∗ g 7−→ F (s)G(s)

ζ 7−→ ζQ(s)
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Arithmetic Functions over Number Fields

For a number field K/Q, its zeta function can be written

ζK(s) =
∑
a∈I+

K

1

N(a)s
=

∞∑
n=1

#{a | N(a) = n}
ns

where I+K = {ideals in OK} and N = NK/Q.
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Arithmetic Functions over Number Fields

As with ζQ(s), we can formalize certain properties of ζK(s) in the
algebra of arithmetic functions AK = {f : I+K → C} with

(f ∗ g)(a) =
∑
b|a

f(b)g(ab−1).

This admits an algebra map to DS(Q):

N∗ : AK −→ A ∼= DS(Q)

f 7−→

N∗f : n 7→
∑

N(a)=n

f(a)


ζ 7−→ N∗ζ ↔ ζK(s)

Interpretation: N allows us to build Dirichlet series for arithmetic
functions over K.
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Varieties over Finite Fields

Let X be an algebraic variety over Fq. Its point-counting zeta function
is the power series

Z(X, t) = exp

[ ∞∑
n=1

#X(Fqn)

n
tn

]

Once again, we can formalize certain properties of Z(X, t) in an
algebra of arithmetic functions.

Let Zeff
0 (X) be the set of effective 0-cycles on X, i.e. formal N0-linear

combinations of closed points of X, written α =
∑

mxx.

Let AX = {f : Zeff
0 (X)→ C} be the algebra of arithmetic functions

with
(f ∗ g)(α) =

∑
β≤α

f(β)g(α− β).

We call the distinguished element ζ : α 7→ 1 the zeta function of X.
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Varieties over Finite Fields

Let AX = {f : Zeff
0 (X)→ C} be the algebra of arithmetic functions

with
(f ∗ g)(α) =

∑
β≤α

f(β)g(α− β).

This time, there’s no map to DS(Q)...

but there’s a map to the algebra
of formal power series:

AX −→ ASpec Fq
∼= C[[t]]

f ↔
∞∑

n=0

f(n)tn

f 7−→ “deg∗(f)”
ζ 7−→ “deg∗(ζ)”↔ Z(X, t)
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What’s really going on?

A,AK and AX are examples of reduced incidence algebras, which
come from a much more general simplicial framework.

k

1

S1
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Numerical Incidence Algebras

Idea (due to Gálvez-Carrillo, Kock and Tonks): zeta functions
come from higher homotopy structure.

In this talk: zeta functions come from decomposition sets.

In general: zeta functions come from decomposition spaces.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

A category C determines a simplicial set NC with:
0-simplices = objects x in C

1-simplices = morphisms x
f−→ y in C

2-simplices = decompositions x
h−→ y = x

f−→ z
g−→ y

etc.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

For a number field K/Q, I+K is a simplicial set with:
0-simplices = ideals a in OK

1-simplices = divisibility b→ a ⇐⇒ a | b
2-simplices = decompositions b→ c→ a

etc.
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Numerical Incidence Algebras

Recall: a simplicial set is a functor S : ∆op → Set

S0
//S1oo

oo
////S2 · · · .oo oo

oo

Example

For a variety X/Fq, Zeff
0 (X) is a simplicial set with:

0-simplices = effective 0-cycles α

1-simplices = relations α ≤ β

2-simplices = decompositions α ≤ γ ≤ β

etc.
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Numerical Incidence Algebras

A certain type of simplicial set called a decomposition set defined by
Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition
The numerical incidence algebra of a decomposition set S is the
vector space I(S) = Hom(k[S1], k) with multiplication

I(S)⊗ I(S) −→ I(S)

f ⊗ g 7−→ (f ∗ g)(x) =
∑
σ∈S2
d1σ=x

f(d2σ)g(d0σ).

σd2σ d0σ

d1σ
0

1

2
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Numerical Incidence Algebras

In I(S) = Hom(k[S1], k), there is a distinguished element called the
zeta function ζ : x 7→ 1.

Key takeaways:
(1) A zeta function is ζ ∈ I(S) for some decomposition set S.
(2) Familiar zeta functions like ζK(s) and Z(X, t) are constructed

from some ζ ∈ Ĩ(S) by pushing forward to another reduced
incidence algebra which can be interpreted in terms of
generating functions:

e.g. Ĩ(N, |) ∼= DS(Q), e.g. Ĩ(N0,≤) ∼= k[[t]].

(3) Some properties of zeta functions can be proven in the incidence
algebra directly:

e.g. ζQ(s) =
∏
p

1

1− p−s
←→ Ĩ(N, |) ∼=

⊗
p

Ĩ({pk}, |).
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Numerical Incidence Algebras

Okay, so far: ζQ(s), ζK(s), Z(X, t), etc. lift to the same framework.

Next: how can we get them talking to each other?
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Objective Linear Algebra

The construction of I(S) can be generalized further using the
formalism of objective linear algebra (“linear algebra with sets”):

Numerical Objective
basis B set B

vector v set map v : X → B

matrix M span
B C

M
s t

vector space V slice category Set/B

linear map with matrix M linear functor t!s∗ : Set/B → Set/C

tensor product V ⊗W Set/B ⊗Set/C ∼= Set/B×C

To recover vector spaces, take V = kB and take cardinalities.
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Abstract Incidence Algebras

How do we construct I(S) as an “objective vector space”?

Numerical Objective
basis B set B

vector space V slice category Set/B

So an element f ∈ I(S) is a linear functor f = t!s
∗ : Set/S1

→ Set
represented by a span

f =


S1 ∗

M
s t
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Abstract Incidence Algebras

So an element f ∈ I(S) is a linear functor f = t!s
∗ : Set/S1

→ Set
represented by a span

f =


S1 ∗

M
s t


Example

The zeta functor is the element ζ ∈ I(S) represented by

ζ =


S1 ∗

S1

id
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Abstract Incidence Algebras

Example

For two elements f, g ∈ I(S) represented by

f =


S1 ∗

M
s

 and g =


S1 ∗

N
t


the convolution f ∗ g ∈ I(S) is represented by

(f ∗ g) =

 S1 S1 × S1 ∗

S2 M ×N

P

d1
(d2, d0)

s× t
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Abstract Incidence Algebras

Advantages of the objective approach:
Intrinsic: zeta is built into the object S directly

Functorial: to compare zeta functions, find the right map S → T

Structural: proofs are categorical, avoiding choosing elements
(e.g. computing local factors of zeta functions explicitly is difficult)

It’s pretty fun to prove things!
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Quadratic Zeta Functions

For a quadratic number field K/Q, the zeta function ζK(s) satisfies

ζK(s) = ζQ(s)L(χ, s)

where L(χ, s) is the L-function attached to the Dirichlet character
χ =

(
D
·
)
, where D = disc. of K.

Theorem (Aycock–K.,‘22)

This formula lifts to an equivalence of linear functors in Ĩ(N, |):

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

where N : (I+K , |)→ (N, |) is the norm and χ+, χ− ∈ I(N, |).

In the numerical incidence algebra, this becomes

N∗ζK = ζQ ∗ (χ+ − χ−) = ζQ ∗ χ.
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Elliptic Curves

For an elliptic curve E/Fq, the zeta function Z(E, t) can be written

Z(E, t) =
1− aqt+ qt2

(1− t)(1− qt)
= Z(P1, t)L(E, t).

Theorem (Aycock–K., ‘23)

In the reduced incidence algebra Ĩ(Zeff
0 (E)), there is an equivalence

of linear functors

π∗ζE + ζP1 ∗ L(E)− ∼= ζP1 ∗ L(E)+

where π : E → P1 is a fixed double cover and L(E)+ and L(E)− are
elements of the incidence algebra I(Zeff

0 (P1)).

Pushing forward to Ĩ(Zeff
0 (SpecFq)) ∼= k[[t]], it already reads

t∗ζE = t∗ζP1 ∗ L(E).
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Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

Let S = (N, |) and T = (I+K , |), so that N : T → S induces

N∗ : Ĩ(T ) −→ Ĩ(S), f 7−→

N∗f : n 7→
∑

N(a)=n

f(a)

 .
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Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

Each term in the formula is represented by a span:

N∗ζK =


S1 ∗

T1

N
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Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

Each term in the formula is represented by a span:

ζQ ∗ χ− =

 S1 S1 × S1 ∗

S2 S1 × S−
1

P−

α−

d1
(d2, d0)

id× j−


for a certain “vector” j− : S−

1 → S1 representing χ−.



Introduction Incidence Algebras Objective Linear Algebra Applications

Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+
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Sketch of Proof

N∗ζK + ζQ ∗ χ− ∼= ζQ ∗ χ+

So the formula is an equivalence of the following spans:
S1 ∗

T1

∐
P−

N ⊔ d1 ◦ α−

 ∼=


S1 ∗

P+

d1 ◦ α+


These are shown to be equivalent prime-by-prime and then
assembled into the global formula.
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Higher Order Zeta Functions

More generally, for any Galois extension K/Q, ζK(s) factors into a
product of L-functions

ζK(s) = ζQ(s)
∏
χ ̸=1

L(χ, s)

where χ are the nontrivial irreducible characters of Gal(K/Q).

Problem: values of χ(n) land in µn in general, so they can’t be
categorified with sets.
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Higher Order Zeta Functions

More generally, for any Galois extension K/Q, ζK(s) factors into a
product of L-functions

ζK(s) = ζQ(s)
∏
χ ̸=1

L(χ, s)

where χ are the nontrivial irreducible characters of Gal(K/Q).

Solution (in progress with J. Aycock): upgrade to simplicial
G-representations (G = GQ).
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Higher Order Zeta Functions

Actually, let’s go for broke: for a(n admissible) GK-representation V ,
we define an “L-functor”

L(V ) =

 ⊕∞
n=0 RK RK

⊕∞
n=0 Vn


(RK = modified representation ring incorporating Frobenius actions)

Theorem (Additivity)

For two (admissible) G-representations V,W , there is an equivalence

L(V ⊕W ) ∼= L(V ) ∗ L(W )

in the incidence algebra I(Q) of L-functors of G-representations.
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Higher Order Zeta Functions

Actually, let’s go for broke: for a(n admissible) GK-representation V ,
we define an “L-functor”

L(V ) =

 ⊕∞
n=0 RK RK

⊕∞
n=0 Vn


(RK = modified representation ring incorporating Frobenius actions)

Conjecture (Artin Induction)

For a(n admissible) GK-representation V , there is an equivalence

L
(
IndGGK

V
)
≈ N∗L(V )

where N∗ : I(K)→ I(Q) is the pushforward along the norm map and
≈ is “trace equivalence”.
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Motivic Zeta Functions

For any k-variety X, Zmot(X, t) =

∞∑
n=0

[Symn X]tn decategorifies to

other zeta functions by applying motivic measures (point counting,
Euler characteristic, etc.)

Das–Howe (‘21) lift Zmot(X, t) to a numerical incidence algebra

Ĩmot(Γ
•,+(X)) =

∞∏
n=0

K0(Var/ΓnX)

where ΓnX are the divided powers of X.

Work in progress: lift Zmot(X, t) to an objective incidence algebra
I(Γ•,+(X)) in the category of simplicial k-varieties. Passing to K0

recovers Das and Howe’s construction.
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More Dreams

Here are some other things we’re working on:
Ihara zeta functions of graphs.

Study the zeta function of an algebraic stack X → X in terms of
ζX , e.g. over Fq, Behrend defines Z(X , t) for such a stack.

Lift motivic L-functions to the objective level and prove formulas,
e.g. motivic Artin induction.

Realize archimedean factors of completed zeta functions as
elements of abstract incidence algebras, e.g. the factor at∞
ζ∞(s) = π−s/2Γ

(
s
2

)
lives in a certain Hecke algebra.

Key insight: decomposition sets⇝ decomposition spaces
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Thank you!
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