Categorifying zeta and *L*-functions

Andrew J. Kobin

ajkobin@emory.edu

Number Theory Seminar

May 18, 2023

Joint work with Jon Aycock

Introduction ••••••••• Incidence Algebras

Objective Linear Algebra

Applications

Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.

Introduction

Based on

Categorifying quadratic zeta functions

Jon Aycock, Andrew Kobin

The Dedekind zeta function of a quadratic number field factors as a product of the Riemann zeta function and the L-function of a quadratic Dirichlet character. We categorify this formula using objective linear algebra in the abstract incidence algebra of the division poset.

 Comments:
 27 pages

 Subjects:
 Number Theory (math.NT)

 MSC classes:
 11M06, 11M41, 18N50, 06A11, 16T10

 Cite as:
 arXiv:2205.06298 [math.NT] (or arXiv:2205.062894 [math.NT] for this version)

and

Categorifying Zeta Functions of Hyperelliptic Curves

Jon Aycock, Andrew Kobin

The zeta function of a hyperelliptic curve C over a finite field factors into a product of L-functions, one of which is the L-function of C. We categorify this formula using objective linear algebra in the abstract incidence algebra of the poset of effective 0-cycles of C. As an application, we prove a collection of combinatorial formulas relating the number of ramified, split and inert points on C to the overall point count of C.

 Comments:
 20 pages

 Subjects:
 Number Theory (math.NT): Algebraic Geometry (math.AG)

 MSC classes:
 14010, 11020, 18150, 06A11, 16T10

 Cite as:
 arXiv:2304.13111 [math.NT]

 (or arXiv:2304.13111/1) [math.NT]
 for arXiv:2304.13111

as well as work in progress with Jon Aycock.

Objective Linear Algebra

Applications 000000000000000

Introduction

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?

motivic L-functions

 $Z_{mot}(X,t)$

arithmetic *L*-functions $\zeta_{\mathbb{Q}}(s), \zeta_K(s), \zeta_X(s)$

local *L*-functions $Z(X/\mathbb{F}_q, t)$

Introduction

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?

Incidence Algebras

Objective Linear Algebra

Arithmetic Functions

A good starting place is always with the Riemann zeta function:

$$\zeta_{\mathbb{Q}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Arithmetic Functions

This is an example of a Dirichlet series:

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}.$$

We will focus on the formal properties of Dirichlet series.

The coefficients f(n) assemble into an **arithmetic function** $f : \mathbb{N} \to \mathbb{C}$. (Think: *F* is a generating function for *f*.)

Then $\zeta_{\mathbb{Q}}(s)$ is the Dirichlet series for $\zeta : n \mapsto 1$.

Incidence Algebras

Objective Linear Algebra

Applications 000000000000000

Arithmetic Functions

The space of arithmetic functions $A = \{f : \mathbb{N} \to \mathbb{C}\}$ form an algebra under convolution:

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right).$$

This identifies the algebra of formal Dirichlet series with A:

$$A \longleftrightarrow DS(\mathbb{Q})$$
$$f \longmapsto F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$
$$f * g \longmapsto F(s)G(s)$$
$$\zeta \longmapsto \zeta_{\mathbb{Q}}(s)$$

Objective Linear Algebra

Applications

Arithmetic Functions over Number Fields

For a number field K/\mathbb{Q} , its zeta function can be written

$$\zeta_K(s) = \sum_{\mathfrak{a} \in I_K^+} \frac{1}{N(\mathfrak{a})^s} = \sum_{n=1}^\infty \frac{\#\{\mathfrak{a} \mid N(\mathfrak{a}) = n\}}{n^s}$$

where $I_K^+ = \{ \text{ideals in } \mathcal{O}_K \}$ and $N = N_{K/\mathbb{Q}}$.

Incidence Algebras

Objective Linear Algebra

Applications 000000000000000

Arithmetic Functions over Number Fields

As with $\zeta_{\mathbb{Q}}(s)$, we can formalize certain properties of $\zeta_K(s)$ in the algebra of arithmetic functions $A_K = \{f : I_K^+ \to \mathbb{C}\}$ with

$$(f\ast g)(\mathfrak{a})=\sum_{\mathfrak{b}\mid\mathfrak{a}}f(\mathfrak{b})g(\mathfrak{a}\mathfrak{b}^{-1}).$$

This admits an algebra map to $DS(\mathbb{Q})$:

$$N_* : A_K \longrightarrow A \cong DS(\mathbb{Q})$$
$$f \longmapsto \left(N_* f : n \mapsto \sum_{N(\mathfrak{a})=n} f(\mathfrak{a}) \right)$$
$$\zeta \longmapsto N_* \zeta \leftrightarrow \zeta_K(s)$$

Incidence Algebras

Objective Linear Algebra

Applications 000000000000000

Arithmetic Functions over Number Fields

As with $\zeta_{\mathbb{Q}}(s)$, we can formalize certain properties of $\zeta_K(s)$ in the algebra of arithmetic functions $A_K = \{f : I_K^+ \to \mathbb{C}\}$ with

$$(f\ast g)(\mathfrak{a})=\sum_{\mathfrak{b}\mid\mathfrak{a}}f(\mathfrak{b})g(\mathfrak{a}\mathfrak{b}^{-1}).$$

This admits an algebra map to $DS(\mathbb{Q})$:

$$N_* : A_K \longrightarrow A \cong DS(\mathbb{Q})$$
$$f \longmapsto \left(N_* f : n \mapsto \sum_{N(\mathfrak{a})=n} f(\mathfrak{a}) \right)$$
$$\zeta \longmapsto N_* \zeta \leftrightarrow \zeta_K(s)$$

Interpretation: N allows us to build Dirichlet series for arithmetic functions over K.

Incidence Algebras

Objective Linear Algebra

Applications

Varieties over Finite Fields

Let *X* be an algebraic variety over \mathbb{F}_q . Its point-counting zeta function is the power series

$$Z(X,t) = \exp\left[\sum_{n=1}^{\infty} \frac{\#X(\mathbb{F}_{q^n})}{n} t^n\right]$$

Incidence Algebras

Objective Linear Algebra

Applications

Varieties over Finite Fields

Let *X* be an algebraic variety over \mathbb{F}_q . Its point-counting zeta function is the power series

$$Z(X,t) = \exp\left[\sum_{n=1}^{\infty} \frac{\#X(\mathbb{F}_{q^n})}{n} t^n\right]$$

Once again, we can formalize certain properties of Z(X,t) in an algebra of arithmetic functions.

Let $Z_0^{\text{eff}}(X)$ be the set of effective 0-cycles on X, i.e. formal \mathbb{N}_0 -linear combinations of closed points of X, written $\alpha = \sum m_x x$.

Let $A_X=\{f:Z_0^{\rm eff}(X)\to \mathbb{C}\}$ be the algebra of arithmetic functions with

$$(f * g)(\alpha) = \sum_{\beta \le \alpha} f(\beta)g(\alpha - \beta).$$

We call the distinguished element $\zeta : \alpha \mapsto 1$ the *zeta function* of X.

Objective Linear Algebra

Applications

Varieties over Finite Fields

Let $A_X = \{f : Z_0^{\text{eff}}(X) \to \mathbb{C}\}$ be the algebra of arithmetic functions with

$$(f * g)(\alpha) = \sum_{\beta \le \alpha} f(\beta)g(\alpha - \beta).$$

This time, there's no map to $DS(\mathbb{Q})$...

Objective Linear Algebra

Applications

Varieties over Finite Fields

Let $A_X = \{f : Z_0^{\text{eff}}(X) \to \mathbb{C}\}$ be the algebra of arithmetic functions with

$$(f * g)(\alpha) = \sum_{\beta \le \alpha} f(\beta)g(\alpha - \beta).$$

This time, there's no map to $DS(\mathbb{Q})$... but there's a map to the algebra of formal power series:

$$A_X \longrightarrow A_{\operatorname{Spec}} \mathbb{F}_q \cong \mathbb{C}[[t]]$$
$$f \leftrightarrow \sum_{n=0}^{\infty} f(n)t^n$$
$$f \longmapsto \operatorname{``deg}_*(f)"$$
$$\zeta \longmapsto \operatorname{``deg}_*(\zeta)" \leftrightarrow Z(X, t)$$

Objective Linear Algebra

Applications 000000000000000

What's really going on?

Objective Linear Algebra

What's really going on?

 A, A_K and A_X are examples of **reduced incidence algebras**, which come from a much more general simplicial framework.

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

Idea (due to Gálvez-Carrillo, Kock and Tonks): zeta functions come from higher homotopy structure.

In this talk: zeta functions come from decomposition sets.

In general: zeta functions come from decomposition spaces.

Incidence Algebras

Objective Linear Algebra

Numerical Incidence Algebras

Recall: a simplicial set is a functor $S: \Delta^{op} \to Set$

$$S_0 \rightleftharpoons S_1 \rightleftharpoons S_2 \cdots$$

Example

A category C determines a simplicial set NC with:

- 0-simplices = objects x in C
- 1-simplices = morphisms $x \xrightarrow{f} y$ in \mathcal{C}
- 2-simplices = decompositions $x \xrightarrow{h} y = x \xrightarrow{f} z \xrightarrow{g} y$
- etc.

Incidence Algebras

Objective Linear Algebra

Numerical Incidence Algebras

Recall: a simplicial set is a functor $S: \Delta^{op} \to Set$

$$S_0 \rightleftharpoons S_1 \rightleftharpoons S_2 \cdots$$

Example

For a number field K/\mathbb{Q} , I_K^+ is a simplicial set with:

- 0-simplices = ideals \mathfrak{a} in \mathcal{O}_K
- 1-simplices = divisibility $\mathfrak{b} \to \mathfrak{a} \iff \mathfrak{a} \mid \mathfrak{b}$
- 2-simplices = decompositions $\mathfrak{b} \to \mathfrak{c} \to \mathfrak{a}$

etc.

Incidence Algebras

Objective Linear Algebra

Numerical Incidence Algebras

Recall: a simplicial set is a functor $S: \Delta^{op} \to Set$

$$S_0 \Longrightarrow S_1 \rightleftharpoons S_2 \cdots$$

Example

For a variety X/\mathbb{F}_q , $Z_0^{\text{eff}}(X)$ is a simplicial set with:

- 0-simplices = effective 0-cycles α
- 1-simplices = relations $\alpha \leq \beta$
- 2-simplices = decompositions $\alpha \leq \gamma \leq \beta$

• etc.

Objective Linear Algebra

Applications 0000000000000000

Numerical Incidence Algebras

A certain type of simplicial set called a **decomposition set** defined by Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition

The **numerical incidence algebra** of a decomposition set *S* is the vector space $I(S) = \text{Hom}(k[S_1], k)$ with multiplication

$$I(S) \otimes I(S) \longrightarrow I(S)$$

$$f \otimes g \longmapsto (f * g)(x) = \sum_{\substack{\sigma \in S_2 \\ d_1 \sigma = x}} f(d_2 \sigma) g(d_0 \sigma)$$

$$d_2 \sigma \int_{\sigma}^{1} d_0 \sigma$$

2

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

In $I(S) = \text{Hom}(k[S_1], k)$, there is a distinguished element called the **zeta function** $\zeta : x \mapsto 1$.

Numerical Incidence Algebras

In $I(S) = \text{Hom}(k[S_1], k)$, there is a distinguished element called the **zeta function** $\zeta : x \mapsto 1$.

Key takeaways:

- (1) A zeta function is $\zeta \in I(S)$ for some decomposition set *S*.
- (2) Familiar zeta functions like ζ_K(s) and Z(X,t) are constructed from some ζ ∈ Ĩ(S) by pushing forward to another reduced incidence algebra which can be interpreted in terms of generating functions:

e.g.
$$\widetilde{I}(\mathbb{N}, |) \cong DS(\mathbb{Q}),$$
 e.g. $\widetilde{I}(\mathbb{N}_0, \leq) \cong k[[t]].$

(3) Some properties of zeta functions can be proven in the incidence algebra directly:

$$\text{e.g.} \quad \zeta_{\mathbb{Q}}(s) = \prod_{p} \frac{1}{1 - p^{-s}} \longleftrightarrow \widetilde{I}(\mathbb{N}, |) \cong \bigotimes_{p} \widetilde{I}(\{p^k\}, |).$$

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

Okay, so far: $\zeta_{\mathbb{Q}}(s), \zeta_K(s), Z(X, t)$, etc. lift to the same framework.

Next: how can we get them talking to each other?

Objective Linear Algebra

Applications 0000000000000000

Objective Linear Algebra

The construction of I(S) can be generalized further using the formalism of **objective linear algebra** ("linear algebra with sets"):

Numerical	Objective
basis B	set B
vector v	set map $v: X \to B$
	M
matrix M	span 🎽 🤺
	B C
vector space V	slice category $\operatorname{Set}_{/B}$
linear map with matrix ${\cal M}$	linear functor $t_!s^*: \operatorname{Set}_{/B} \to \operatorname{Set}_{/C}$
tensor product $V \otimes W$	$\operatorname{Set}_{/B} \otimes \operatorname{Set}_{/C} \cong \operatorname{Set}_{/B \times C}$

Objective Linear Algebra

Applications 000000000000000

Objective Linear Algebra

The construction of I(S) can be generalized further using the formalism of **objective linear algebra** ("linear algebra with sets"):

Numerical	Objective
basis B	set B
vector v	set map $v: X \to B$
	M
matrix M	span 🕺 🤸
	B C
vector space V	slice category $\operatorname{Set}_{/B}$
linear map with matrix \boldsymbol{M}	linear functor $t_!s^*: \operatorname{Set}_{/B} \to \operatorname{Set}_{/C}$
tensor product $V \otimes W$	$\operatorname{Set}_{/B} \otimes \operatorname{Set}_{/C} \cong \operatorname{Set}_{/B \times C}$

To recover vector spaces, take $V = k^B$ and take cardinalities.

Objective Linear Algebra

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$

Objective Linear Algebra

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$
basis S_1	set S_1

Objective Linear Algebra

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$
basis S_1	set S_1
$k[S_1] =$ free vector space on S_1	slice category $\operatorname{Set}_{/S_1}$

Objective Linear Algebra

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$
basis S_1	set S_1
$k[S_1] = $ free vector space on S_1	slice category $\operatorname{Set}_{/S_1}$
dual space $I(S) = \operatorname{Hom}(k[S_1], k)$	dual space $I(S) := \operatorname{Lin}(\operatorname{Set}_{/S_1}, \operatorname{Set})$

Objective Linear Algebra

Abstract Incidence Algebras

How do we construct I(S) as an "objective vector space"?

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$
basis S_1	set S_1
$k[S_1] = $ free vector space on S_1	slice category $\operatorname{Set}_{/S_1}$
dual space $I(S) = \operatorname{Hom}(k[S_1], k)$	dual space $I(S) := \operatorname{Lin}(\operatorname{Set}_{/S_1}, \operatorname{Set})$

So an element $f \in I(S)$ is a linear functor $f = t_! s^* : Set_{/S_1} \to Set$ represented by a span

$$f = \begin{pmatrix} M \\ \swarrow & \uparrow \\ S_1 & \ast \end{pmatrix}$$

Objective Linear Algebra

Applications

Abstract Incidence Algebras

So an element $f \in I(S)$ is a linear functor $f = t_! s^* : Set_{/S_1} \to Set$ represented by a span

$$f = \begin{pmatrix} M \\ s & t \\ S_1 & * \end{pmatrix}$$

Example

The zeta functor is the element $\zeta \in I(S)$ represented by

$$\zeta = \left(\begin{array}{c} S_1 \\ id \\ S_1 \end{array} \right)$$

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Example

For two elements $f, g \in I(S)$ represented by

$$f = \begin{pmatrix} M \\ s \\ S_1 & * \end{pmatrix} \quad \text{and} \quad g = \begin{pmatrix} N \\ s \\ S_1 & * \end{pmatrix}$$

the convolution $f * g \in I(S)$ is represented by

Abstract Incidence Algebras

Advantages of the objective approach:

- Intrinsic: zeta is built into the object S directly
- Functorial: to compare zeta functions, find the right map $S \rightarrow T$
- Structural: proofs are categorical, avoiding choosing elements (e.g. computing local factors of zeta functions explicitly is difficult)
- It's pretty fun to prove things!

Incidence Algebras

Objective Linear Algebra

Applications •••••••••

Quadratic Zeta Functions

For a quadratic number field K/\mathbb{Q} , the zeta function $\zeta_K(s)$ satisfies

 $\zeta_K(s) = \zeta_{\mathbb{Q}}(s)L(\chi,s)$

where $L(\chi, s)$ is the *L*-function attached to the Dirichlet character $\chi = \left(\frac{D}{\cdot}\right)$, where D = disc. of K.

Objective Linear Algebra

Applications ••••••••••

Quadratic Zeta Functions

For a quadratic number field K/\mathbb{Q} , the zeta function $\zeta_K(s)$ satisfies

 $\zeta_K(s) = \zeta_{\mathbb{Q}}(s)L(\chi,s)$

where $L(\chi, s)$ is the *L*-function attached to the Dirichlet character $\chi = \left(\frac{D}{\cdot}\right)$, where D = disc. of K.

Theorem (Aycock–K., '22)

This formula lifts to an equivalence of linear functors in $\widetilde{I}(\mathbb{N}, |)$:

$$N_*\zeta_K + \zeta_\mathbb{Q} * \chi^- \cong \zeta_\mathbb{Q} * \chi^+$$

where $N : (I_K^+, |) \to (\mathbb{N}, |)$ is the norm and $\chi^+, \chi^- \in I(\mathbb{N}, |)$.

In the numerical incidence algebra, this becomes

$$N_*\zeta_K = \zeta_{\mathbb{Q}} * (\chi^+ - \chi^-) = \zeta_{\mathbb{Q}} * \chi.$$

Incidence Algebras

Objective Linear Algebra

Applications

Elliptic Curves

For an elliptic curve E/\mathbb{F}_q , the zeta function Z(E,t) can be written

$$Z(E,t) = \frac{1 - a_q t + q t^2}{(1 - t)(1 - qt)} = Z(\mathbb{P}^1, t) L(E, t).$$

Theorem (Aycock-K., '23)

In the reduced incidence algebra $\widetilde{I}(Z_0^{\rm eff}(E)),$ there is an equivalence of linear functors

$$\pi_*\zeta_E + \zeta_{\mathbb{P}^1} * L(E)^- \cong \zeta_{\mathbb{P}^1} * L(E)^+$$

where $\pi : E \to \mathbb{P}^1$ is a fixed double cover and $L(E)^+$ and $L(E)^-$ are elements of the incidence algebra $I(Z_0^{\text{eff}}(\mathbb{P}^1))$.

Pushing forward to $\widetilde{I}(Z_0^{\text{eff}}(\operatorname{Spec} \mathbb{F}_q)) \cong k[[t]]$, it already reads

 $t_*\zeta_E = t_*\zeta_{\mathbb{P}^1} * L(E).$

Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

Let $S = (\mathbb{N}, |)$ and $T = (I_K^+, |)$, so that $N : T \to S$ induces

$$N_*: \widetilde{I}(T) \longrightarrow \widetilde{I}(S), \quad f \longmapsto \left(N_*f: n \mapsto \sum_{N(\mathfrak{a})=n} f(\mathfrak{a})\right).$$

Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K+\zeta_{\mathbb Q}*\chi^-\cong\zeta_{\mathbb Q}*\chi^+$$

Each term in the formula is represented by a span:

$$N_*\zeta_K = \left(\begin{array}{c} T_1 \\ N \\ S_1 \end{array} \right)$$

Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

Each term in the formula is represented by a span:

for a certain "vector" $j^-: S_1^- \to S_1$ representing χ^- .

Incidence Algebras

Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

Each term in the formula is represented by a span:

for a certain "vector" $j^+: S_1^+ \to S_1$ representing χ^+ .

Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

So the formula is an equivalence of the following spans:

$$\begin{pmatrix} T_1 \coprod P^- \\ N \sqcup d_1 \circ \alpha \swarrow \\ S_1 & * \end{pmatrix} \cong \begin{pmatrix} P^+ \\ d_1 \circ \alpha^+ \\ S_1 & * \end{pmatrix}$$

These are shown to be equivalent prime-by-prime and then assembled into the global formula.

Higher Order Zeta Functions

More generally, for any Galois extension $K/\mathbb{Q},\,\zeta_K(s)$ factors into a product of L-functions

$$\zeta_K(s) = \zeta_{\mathbb{Q}}(s) \prod_{\chi \neq 1} L(\chi, s)$$

where χ are the nontrivial irreducible characters of $Gal(K/\mathbb{Q})$.

Problem: values of $\chi(n)$ land in μ_n in general, so they can't be categorified with sets.

Higher Order Zeta Functions

More generally, for any Galois extension $K/\mathbb{Q},\,\zeta_K(s)$ factors into a product of L-functions

$$\zeta_K(s) = \zeta_{\mathbb{Q}}(s) \prod_{\chi \neq 1} L(\chi, s)$$

where χ are the nontrivial irreducible characters of $Gal(K/\mathbb{Q})$.

Solution (in progress with J. Aycock): upgrade to simplicial *G*-representations ($G = G_Q$).

Incidence Algebras

Objective Linear Algebra

Applications 0000000000000000

Higher Order Zeta Functions

Actually, let's go for broke: for a(n admissible) G_K -representation V, we define an "*L*-functor"

$$L(V) = \begin{pmatrix} \bigoplus_{n=0}^{\infty} V_n \\ \swarrow & \searrow \\ \bigoplus_{n=0}^{\infty} R_K & R_K \end{pmatrix}$$

 $(R_K = modified representation ring incorporating Frobenius actions)$

Theorem (Additivity)

For two (admissible) G-representations V, W, there is an equivalence

$$L(V \oplus W) \cong L(V) * L(W)$$

in the incidence algebra $I(\mathbb{Q})$ of L-functors of G-representations.

Higher Order Zeta Functions

Actually, let's go for broke: for a(n admissible) G_K -representation V, we define an "*L*-functor"

$$L(V) = \begin{pmatrix} \bigoplus_{n=0}^{\infty} V_n \\ \swarrow & \searrow \\ \bigoplus_{n=0}^{\infty} R_K & R_K \end{pmatrix}$$

 $(R_K = modified representation ring incorporating Frobenius actions)$

Conjecture (Artin Induction)

For a(n admissible) G_K -representation V, there is an equivalence

$$L\left(\operatorname{Ind}_{G_K}^G V\right) \approx N_*L(V)$$

where $N_*: I(K) \to I(\mathbb{Q})$ is the pushforward along the norm map and \approx is "trace equivalence".

Motivic Zeta Functions

For any *k*-variety X, $Z_{mot}(X, t) = \sum_{n=0}^{\infty} [\operatorname{Sym}^n X] t^n$ decategorifies to other zeta functions by applying motivic measures (point counting, Euler characteristic, etc.)

Das–Howe ('21) lift $Z_{mot}(X,t)$ to a numerical incidence algebra

$$\widetilde{I}_{mot}(\Gamma^{\bullet,+}(X)) = \prod_{n=0}^{\infty} K_0(\operatorname{Var}_{/\Gamma^n X})$$

where $\Gamma^n X$ are the divided powers of X.

Motivic Zeta Functions

For any *k*-variety X, $Z_{mot}(X, t) = \sum_{n=0}^{\infty} [\text{Sym}^n X] t^n$ decategorifies to other zeta functions by applying motivic measures (point counting, Euler characteristic, etc.)

Das–Howe ('21) lift $Z_{mot}(X,t)$ to a numerical incidence algebra

$$\widetilde{I}_{mot}(\Gamma^{\bullet,+}(X)) = \prod_{n=0}^{\infty} K_0(\operatorname{Var}_{/\Gamma^n X})$$

where $\Gamma^n X$ are the divided powers of X.

Work in progress: lift $Z_{mot}(X,t)$ to an objective incidence algebra $I(\Gamma^{\bullet,+}(X))$ in the category of simplicial *k*-varieties. Passing to K_0 recovers Das and Howe's construction.

More Dreams

Here are some other things we're working on:

- Ihara zeta functions of graphs.
- Study the zeta function of an algebraic stack $\mathcal{X} \to X$ in terms of ζ_X , e.g. over \mathbb{F}_q , Behrend defines $Z(\mathcal{X}, t)$ for such a stack.
- Lift motivic *L*-functions to the objective level and prove formulas, e.g. motivic Artin induction.
- Realize archimedean factors of completed zeta functions as elements of abstract incidence algebras, e.g. the factor at ∞ $\zeta_{\infty}(s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right)$ lives in a certain Hecke algebra.

Key insight: decomposition sets ~> decomposition spaces

Objective Linear Algebra

Applications

Thank you!