Arithmetic Geometry and Stacky Curves

Andrew J. Kobin

ajkobin@emory.edu

UGA Number Theory/Arithmetic Geometry Seminar

September 20, 2023

Stacky Curves

Local-Global Principles

Modular Forms

Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Motivation: Find all integer solutions (x, y, z) to the generalized Fermat equation

$$Ax^p + Bx^q = Cz^r$$

for $A, B, C \in \mathbb{Z}$ and $p, q, r \geq 2$.

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Motivation: Find integer solutions to $Ax^p + Bx^q = Cz^r$.

Example ((A, B, C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to $x^2 + y^2 = z^2$, with primitive (gcd(x, y, z) = 1) solutions parametrized by

$$(x, y, z) = \left(\frac{s^2 - t^2}{2}, st, \frac{s^2 + t^2}{2}\right)$$

for odd, coprime $s > t \ge 1$.

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Motivation: Find integer solutions to $Ax^p + Bx^q = Cz^r$.

Example ((A, B, C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to $x^2 + y^2 = z^2$, with primitive (gcd(x, y, z) = 1) solutions parametrized by

$$(x,y,z) = \left(\frac{s^2-t^2}{2}, st, \frac{s^2+t^2}{2}\right) \quad \text{for odd, coprime } s>t\geq 1.$$

Wow. Another day as an adult without using the Pythagorean Theorem.

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Motivation: Find integer solutions to $Ax^p + Bx^q = Cz^r$.

Example ((A, B, C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to $x^2 + y^2 = z^2$, with primitive (gcd(x, y, z) = 1) solutions parametrized by

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Motivation: Find integer solutions to $Ax^p + Bx^q = Cz^r$.

Example ((A, B, C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are *no* integer solutions to $x^n + y^n = z^n$ for n > 2.

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Motivation: Find integer solutions to $Ax^p + Bx^q = Cz^r$.

Example ((A, B, C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are *no* integer solutions to $x^n + y^n = z^n$ for n > 2. Assume *n* is prime. If (x_0, y_0, z_0) were such a solution, it would determine an elliptic curve

$$\underbrace{\underbrace{}_{E:y^2 = x(x - x_0^n)(x + y_0^n)}}_{\underbrace{}_{E:y^2 = x(x - x_0^n)(x + y_0^n)}}$$

Ribet showed E is not modular. However, Wiles showed all such elliptic curves are modular, a contradiction.

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Takeaway: Integer solutions to $Ax^p + Bx^q = Cz^r$ can be studied using geometry.

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Here are some more known cases of $Ax^p + Bx^q = Cz^r$.

• (Beukers, Darmon–Granville) Let $\chi = \frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1$. The equation $x^p + y^q = z^r$ has infinitely many primitive solutions when $\chi > 0$ and finitely many when $\chi < 0$.

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Here are some more known cases of $Ax^p + Bx^q = Cz^r$.

- (Beukers, Darmon–Granville) Let $\chi = \frac{1}{p} + \frac{1}{q} + \frac{1}{r} 1$. The equation $x^p + y^q = z^r$ has infinitely many primitive solutions when $\chi > 0$ and finitely many when $\chi < 0$.
- (Mordell, Zagier, Edwards) When $\chi > 0$, the primitive solutions to $x^p + y^q = z^r$ may always be parametrized explicitly (as in the (2, 2, 2) case).
- (Fermat, Euler, et al.) The case $\chi = 0$ only occurs for (2,3,6), (4,4,2), (3,3,3) and permutations of these. In each case, descent proves there are finitely many primitive solutions.
- (2,3,7) was solved by Poonen–Schaeffer–Stoll (2007).
- (2,3,8), (2,3,9) were solved by Bruin (1999, 2004).
- etc.

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Question: How do we count solutions to such equations?

Local-Global Principles

Modular Forms

Generalized Fermat Equations

Question: How do we count solutions to such equations?

One strategy is to form the scheme theoretic locus of nontrivial, primitive solutions in 3-dimensional space over \mathbb{Z} :

$$S = \operatorname{Spec}(\mathbb{Z}[x, y, z] / (Ax^p + By^q - Cz^r)) \smallsetminus \{x = y = z = 0\} \subseteq \mathbb{A}^3_{\mathbb{Z}}.$$

For any ring *R*, this keeps track of the *R*-solutions:

 $S(R) = \{x, y, z \in R \mid Ax^p + By^q = Cz^r, \text{ nontrivial, primitive}\}.$

Local-Global Principles

Modular Forms

Generalized Fermat Equations

$$S = \operatorname{Spec}(\mathbb{Z}[x, y, z] / (Ax^p + By^q - Cz^r)) \smallsetminus \{x = y = z = 0\} \subseteq \mathbb{A}^3_{\mathbb{Z}}$$

Let G be the group of symmetries of S. $(G = \mathbb{G}_m \cdot (\mu_p \times \mu_q \times \mu_r))$

Local-Global Principles

Modular Forms

Generalized Fermat Equations

$$S = \operatorname{Spec}(\mathbb{Z}[x, y, z] / (Ax^p + By^q - Cz^r)) \smallsetminus \{x = y = z = 0\} \subseteq \mathbb{A}^3_{\mathbb{Z}}$$

Let G be the group of symmetries of S. $(G = \mathbb{G}_m \cdot (\mu_p \times \mu_q \times \mu_r))$

We can form the quotient X = S/G whose points are exactly the equivalence classes of solutions:

$$\begin{split} X(R) &= \{x,y,z \in R \mid Ax^p + By^q = Cz^r, \text{ nontriv., prim.}\} / \sim \\ & \text{where } g \cdot (x,y,z) \sim (x,y,z). \end{split}$$

Upside: these are easier to count than S(R). Downside: the geometry of *X* is bad!

Local-Global Principles

Modular Forms

Generalized Fermat Equations

$$S = \operatorname{Spec}(\mathbb{Z}[x, y, z] / (Ax^p + By^q - Cz^r)) \smallsetminus \{x = y = z = 0\} \subseteq \mathbb{A}^3_{\mathbb{Z}}$$

Let G be the group of symmetries of S. $(G = \mathbb{G}_m \cdot (\mu_p \times \mu_q \times \mu_r))$

We can form the quotient stack $\mathcal{X} = [S/G]$ whose points are exactly the groupoid of solutions:

 $\mathcal{X}(R)$: objects: nontriv., prim. solutions to $Ax^p + By^q = Cz^r$ morphisms: $(x, y, z) \xrightarrow{g} g \cdot (x, y, z)$.

Upside: these are easier to count than S(R). Downside: none - stacks are awesome!

Generalized	Fermat	Equations	

Local-Global Principles

Modular Forms

Problem: all sorts of information is lost when we consider quotients.

Generalized	Fermat	Equations	

Local-Global Principles

Modular Forms

Solution: Keep track of extra automorphisms using groupoids.

Generalized	Fermat	Equations

Local-Global Principles

Modular Forms

Stacks

A groupoid is a category with only isomorphisms.

Main example: for a group G, BG has one object \bullet and one morphisms for every $g \in G$:

Generalized	Fermat	Equations

Local-Global Principles

Modular Forms

Stacks

A groupoid is a category with only isomorphisms.

Main example: for a group G, BG has one object \bullet and one morphisms for every $g \in G$:

A stack is a functor $\mathcal{X} : \operatorname{Ring} \to \operatorname{Groupoid}$ that assigns to each ring R a groupoid $\mathcal{X}(R)$.

Moreover, it must satisfy *descent*: for any cover* $\{R \to S_i\}$, the objects/morphisms of $\mathcal{X}(R)$ are determined by those of $\{\mathcal{X}(S_i)\}$.

Generalized	Fermat	Equations	

Local-Global Principles

Modular Forms

Stacks

A stack is a functor $\mathcal{X} : \mathtt{Ring} \to \mathtt{Groupoid}$ satisfying descent.

Example

For our plane curve $X:y^2=x,$ groupoids remember automorphisms like $(x,y)\leftrightarrow (x,-y)$

Here, each downstairs "point" is obtained by collapsing upstairs points together and identifying morphisms.

Local-Global Principles

Modular Forms

Stacks

A stack is a functor $\mathcal{X}:\mathtt{Ring}\to\mathtt{Groupoid}$ satisfying descent.

Example

More generally, for a group G acting on a space Y, we can form the *quotient stack* [Y/G] whose R-points are the groupoid of G-orbits:

Local-Global Principles

Modular Forms

Stacky Curves

Here's a technical definition of a stacky curve:

Definition A stacky curve is a smooth, separated, connected stack X : Ring → Groupoid satisfying: X has an underlying *coarse moduli scheme* X with a map π : X → X (collapse the groupoid to a set). π is an isomorphism away from a finite set of points. X is 1-dimensional (aka a curve). There is an étale surjection U → X where U is a scheme.

• The diagonal $\Delta_{\mathcal{X}} : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is representable.

Local-Global Principles

Modular Forms

Here's a more informal definition though:

A stacky curve \mathcal{X} consists of an ordinary curve X, together with a finite number of marked points P_1, \ldots, P_n , each of which is decorated with a finite automorphism group G_i .

Local-Global Principles

Modular Forms

Here's a more informal definition though:

A stacky curve \mathcal{X} consists of an ordinary curve X, together with a finite number of marked points P_1, \ldots, P_n , each of which is decorated with a finite automorphism group G_i .

Over \mathbb{C} (or \mathbb{Q} , or a number field), the groups G_i are cyclic, so $G_i \cong \mathbb{Z}/e_i\mathbb{Z}$ and we can keep track of this data with a cartoon like this:

Stacky Curves

Local-Global Principles

Modular Forms

Stacky Curves

Here's a cartoon of our folded parabola:

2

Stacky Curves

Local-Global Principles

Modular Forms

Stacky Curves

Here's a cartoon of a stacky curve with coarse space \mathbb{P}^1 :

Stacky Curves

Local-Global Principles

Modular Forms

Stacky Curves

Here's a cartoon of our stacky curve [S/G], where S = primitive integer solutions to $Ax^p + Bx^q = Cz^r$:

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations, Revisited

To find solutions to $Ax^p + Bx^q = Cz^r$, we can exploit the geometry of $\mathcal{X} = [S/G]$:

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations, Revisited

To find solutions to $Ax^p + Bx^q = Cz^r$, we can exploit the geometry of $\mathcal{X} = [S/G]$:

(1) Find a nice map $C_0 \rightarrow \mathcal{X}$ from a curve C_0 whose points are easy to find (e.g. a conic).

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations, Revisited

To find solutions to $Ax^p + Bx^q = Cz^r$, we can exploit the geometry of $\mathcal{X} = [S/G]$:

(1) Find a nice map $C_0 \rightarrow \mathcal{X}$ from a curve C_0 whose points are easy to find (e.g. a conic).

(2) Compute all twists of C_0 and their points.

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations, Revisited

To find solutions to $Ax^p + Bx^q = Cz^r$, we can exploit the geometry of $\mathcal{X} = [S/G]$:

(1) Find a nice map $C_0 \rightarrow \mathcal{X}$ from a curve C_0 whose points are easy to find (e.g. a conic).

(2) Compute all twists of C_0 and their points.

(3) Use descent to identify points on \mathcal{X} .

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations, Revisited

Example

For $\mathcal{X}: x^2 + y^2 = z^2$, there is an étale map

and \mathbb{P}^1 has infinitely many points which descend, so there are infinitely many primitive Pythagorean triples.

 \mathbb{P}^1

X

Stacky Curves

Local-Global Principles

Modular Forms

Generalized Fermat Equations, Revisited

Example (Poonen–Schaeffer–Stoll)

For $\mathcal{X}: x^2 + y^3 = z^7$, there is an étale map

where *C* is the Klein quartic, defined by $x^3y + y^3 + x = 0$. Descending points from *C* and its 10 twists gives 16 primitive solutions:

Stacky Curves

Local-Global Principles

Modular Forms

Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve *X* asks if $X(\mathbb{Q}) \neq \emptyset$ is equivalent to $X(\mathbb{Q}_p) \neq \emptyset$ for all completions $\mathbb{Q}_p, p \leq \infty$.

Local-Global Principles

Modular Forms

Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if $X(\mathbb{Q}) \neq \emptyset$ is equivalent to $X(\mathbb{Q}_p) \neq \emptyset$ for all completions $\mathbb{Q}_p, p \leq \infty$.

- Let g = g(X) be the genus of X. It is known that:
 - (Hasse–Minkowski) If g = 0, the LGP holds for X.
 - There are counterexamples to the LGP for all g > 0. For example, $X : 2y^2 = 1 - 17x^4$.

Local-Global Principles

Modular Forms

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X} , we pose the *local-global principle for integral points*:

is $\mathcal{X}(\mathbb{Z}) \neq \emptyset$ equivalent to $\mathcal{X}(\mathbb{Z}_p) \neq \emptyset$ for all completions \mathbb{Z}_p ?

Local-Global Principles

Modular Forms

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X} , we pose the *local-global principle for integral points*:

is $\mathcal{X}(\mathbb{Z}) \neq \emptyset$ equivalent to $\mathcal{X}(\mathbb{Z}_p) \neq \emptyset$ for all completions \mathbb{Z}_p ?

This time, the genus $g = g(\mathcal{X})$ can be *rational*:

$$g(\mathcal{X}) = g(X) + \frac{1}{2} \sum_{i=1}^{n} \frac{e_i - 1}{e_i}$$

where X is the coarse space and e_1, \ldots, e_n are the orders of the automorphisms groups at the finite number of stacky points.

When \mathcal{X} is a *wild* stacky curve, I proved a more general formula for $g(\mathcal{X})$.

Stacky Curves

Local-Global Principles

Modular Forms

Local-Global Principle for Stacky Curves

Example

Example

Our stacky curve [S/G], where S = primitive integer solutions to $Ax^p + Bx^q = Cz^r$, has genus $g = \frac{1}{2} \left(3 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}\right)$. $p \qquad q \qquad r$ For example, the (2, 3, 7) curve has genus $g = \frac{85}{84}$.

Local-Global Principles

Modular Forms

Local-Global Principle for Stacky Curves

For
$$\mathcal{X} = [S/G]$$
 where $S : Ax^p + By^q = Cz^r$, $g = \frac{1}{2} \left(3 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}\right)$.

Theorem (Bhargava–Poonen)

• If $g < \frac{1}{2}$, the LGP holds.

2 There are counterexamples to the LGP when $g = \frac{1}{2}$.

Theorem (Darmon–Granville)

In the (2,2,n) case, with $g = \frac{n-1}{n}$, there are counterexamples to the LGP.

Joint work with Duque-Rosero, Keyes, Roy, Sankar, Wang (in progress): a complete solution in the (2, 2, n) case.

Local-Global Principles

Thank you! Questions?

Stacky Curves

Local-Global Principles

Modular Forms

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

Local-Global Principles

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

Stacky Curves

Local-Global Principles

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

More generally, there are modular curves $\mathcal{X}(N), \mathcal{X}_0(N), \mathcal{X}_1(N)$, etc. parametrizing elliptic curves with *level structure*.

Enough about those for now, but remember the Klein quartic?

Local-Global Principles

Modular Forms

Generalized Fermat Equations, Revisited

Example (Poonen–Schaeffer–Stoll)

For $\mathcal{X}: x^2 + y^3 = z^7$, there is an étale map

where *C* is the Klein quartic, defined by $x^3y + y^3 + x = 0$. Descending points from *C* and its 10 twists gives 16 primitive solutions:

Stacky Curves

Local-Global Principles

Modular Forms

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

More generally, there are modular curves $\mathcal{X}(N), \mathcal{X}_0(N), \mathcal{X}_1(N)$, etc. parametrizing elliptic curves with *level structure*.

Enough about those for now, but remember the Klein quartic? It's secretly isomorphic to $\mathcal{X}(7)$.

Stacky Curves

Local-Global Principles

Modular Forms

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

Fact 2: Modular curves give rise to modular forms.

Local-Global Principles

Modular Forms

Modular Forms

Let $\mathfrak{h} = \{z \in \mathbb{C} : \operatorname{im}(z) > 0\}$ be the upper half-plane in \mathbb{C} .

Definition

A modular form of weight 2k is a holomorphic function $f:\mathfrak{h}\to\mathbb{C}$ such that

• For all
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), f(z) = (cz+d)^{-2k} f(gz).$$

2) f is holomorphic at ∞ .

Local-Global Principles

Modular Forms

Modular Forms

Let $\mathfrak{h} = \{z \in \mathbb{C} : \operatorname{im}(z) > 0\}$ be the upper half-plane in \mathbb{C} .

Definition

A modular form of weight 2k is a holomorphic function $f : \mathfrak{h} \to \mathbb{C}$ such that

• For all
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), f(z) = (cz+d)^{-2k}f(gz).$$

2) f is holomorphic at ∞ .

Informal version: modular forms are highly symmetric holomorphic functions on the upper half-plane in \mathbb{C} .

Modular Forms

Given a modular form $f:\mathfrak{h}\to\mathbb{C},$ we can define a differential form $\omega=f(z)\,dz^k.$

By the symmetry of f, ω is not just defined on the upper half-plane, but on the quotient $\mathfrak{h}/SL_2(\mathbb{Z})$.

Compactifying by adding a point at ∞ , this quotient $\overline{\mathfrak{h}/SL_2(\mathbb{Z})}$ becomes isomorphic to $\mathcal{X}(1)$, the moduli stack of elliptic curves.

Upshot: modular forms act like "functions" on the moduli stack $\mathcal{X}(1)$.

Local-Global Principles

Modular Forms

Katz Modular Forms

This allows one to define modular forms over any field K, as differential forms on the moduli stack $\mathcal{X}(1)$ of elliptic curves over K.

For an elliptic curve *E* over an arbitrary field *K*, let $\omega_{E/K}$ be the pullback of the canonical line bundle $\Omega_{E/K}^1$ to Spec *K*.

Definition

A Katz modular form of weight k over K is a choice of section f(E/A) of $\omega_{E/A}^{\otimes k/2}$ for every K-algebra A and elliptic curve E/A satisfying:

- f(E/A) is constant on isomorphism class of E/A.
- (Naturality) f commutes with pullback along $A \rightarrow B$.
- (Holomorphic condition) The "*q*-expansion" $f(E_{\text{Tate}})$ has coefficients in $K \otimes \mathbb{Z}[[q]]$.

Cusp forms are modular forms with *q*-expansion coefficients in $K \otimes q\mathbb{Z}[[q]]$.

Local-Global Principles

Modular Forms

Katz Modular Forms

Pocket version:

- Pull back $\Omega^1_{E/K}$ along basepoint $O: \operatorname{Spec} K \hookrightarrow E$ to get $\omega_{E/K}$.
- Choose compatible sections $f(E/A) \in H^0(A, \omega_{E/A}^{\otimes k/2})$.
- Enforce holomorphic (and cusp) conditions with a geometric version of *q*-expansion principle.

Local-Global Principles

Modular Forms

Katz Modular Forms

Pocket version:

- Pull back $\Omega^1_{E/K}$ along basepoint $O: \operatorname{Spec} K \hookrightarrow E$ to get $\omega_{E/K}$.
- Choose compatible sections $f(E/A) \in H^0(A, \omega_{E/A}^{\otimes k/2})$.
- Enforce holomorphic (and cusp) conditions with a geometric version of *q*-expansion principle.

Theorem

Let \mathcal{M}_k be the space of weight k modular forms over K. Then there is an isomorphism

$$\mathcal{M}_k \xrightarrow{\sim} H^0(\mathcal{X}(1), \Omega_{\mathcal{X}(1)/K}(\Delta)^{k/2}), \quad f \longmapsto f \, dz^{k/2}$$

where $\mathcal{X}(1)$ is the moduli stack of elliptic curves and $\Delta=\infty$ is the cusp divisor.

Since $\mathcal{X}(1)\cong\mathbb{P}(4,6)^{\star\star\star}$, the graded ring of modular forms is

$$\bigoplus_{k\geq 0} \mathcal{M}_k \cong K[x_4, x_6].$$

Stacky Curves

Local-Global Principles

Modular Forms

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of mod p modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_p .

Local-Global Principles

Modular Forms

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of mod p modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_p .

For p > 3, the story for $\mathcal{X}(1)$ is the same as before:

and $\bigoplus \mathcal{M}_k \cong \mathbb{F}_p[x_4, x_6]$ (originally due to Edixhoven).

However, over \mathbb{F}_2 and \mathbb{F}_3 , the stacky structure of $\mathcal{X}(1)$ looks different:

Local-Global Principles

Modular Forms

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of mod p modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_p .

Even before considering the stacky structure, we have:

Theorem (Katz-Mazur)

There is a modular form $A \in \mathcal{M}_{p-1}(1; \mathbb{F}_p)$ (the Hasse invariant) satisfying $\operatorname{Frob}_p^* f = Af$ for every $f \in \mathcal{M}_k$. Moreover,

- For $p \neq 2, 3$, $A \cong E_{p-1} \mod p$, the weight p-1 Eisenstein series.
- For p = 2,3, A is not the mod p reduction of any classical modular form.

Local-Global Principles

Modular Forms

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of mod p modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_p .

Recall: $\mathcal{M}_k \cong H^0(\mathcal{X}(1), \Omega(\Delta)^{k/2})$. Main tool to compute $\Omega = \mathcal{O}(K_{\mathcal{X}})$:

Theorem (K. 2021)

For a (tame or wild) stacky curve \mathcal{X} with coarse moduli space $\pi : \mathcal{X} \to X$, their canonical divisors satisfy

$$K_{\mathcal{X}} = \pi^* K_X + \sum_{P \in \mathcal{X}(K)} \sum_{i=0}^{\infty} (|G_{P,i}| - 1)P$$

where $G_{P,i}$ are the higher ramification groups at P.

Stacky Curves

Local-Global Principles

Modular Forms

Modular Forms Mod *p*

Theorem (K. 2021)

$$K_{\mathcal{X}} = \pi^* K_X + \sum_{P \in \mathcal{X}(K)} \sum_{i=0}^{\infty} (|G_{P,i}| - 1)P.$$

Corollary

For the tame stacky curve $\mathcal{X}(1)$ over $\mathbb{F}_p, p > 3$,

$$\underbrace{\begin{array}{ccc} 4 & 6 \\ \bullet & \bullet & \bullet \end{array}}_{4} \mathcal{X}(1)$$

we have $K_{\mathcal{X}(1)} = -2\infty + 3P + 5Q$.

Therefore $\bigoplus \mathcal{M}_k \cong \bigoplus H^0\left(\mathcal{X}(1), \mathcal{O}\left(\frac{7}{12}\right)\right) \cong K[x_4, x_6].$

Local-Global Principles

Modular Forms

Modular Forms Mod *p*

Theorem (K. 2021)

$$K_{\mathcal{X}} = \pi^* K_X + \sum_{P \in \mathcal{X}(K)} \sum_{i=0}^{\infty} (|G_{P,i}| - 1)P.$$

Corollary (K.–Zureick-Brown 2023+ ϵ)

For the wild stacky curve $\mathcal{X}(1)$ over \mathbb{F}_3 ,

we have $K_{\chi(1)} = -2\infty + 7P$.

Therefore $\bigoplus \mathcal{M}_k \cong \bigoplus H^0\left(\mathcal{X}(1), \mathcal{O}\left(\frac{1}{6}\right)\right) \cong K[\mathbf{x}_1, \mathbf{x}_6].$

Local-Global Principles

Modular Forms

Modular Forms Mod *p*

Theorem (K. 2021)

$$K_{\mathcal{X}} = \pi^* K_X + \sum_{P \in \mathcal{X}(K)} \sum_{i=0}^{\infty} (|G_{P,i}| - 1)P.$$

Corollary (K.–Zureick-Brown 2023+ ϵ)

For the wild stacky curve $\mathcal{X}(1)$ over \mathbb{F}_2 ,

we have $K_{\mathcal{X}(1)} = -2\infty + 14P$.

Therefore $\bigoplus \mathcal{M}_k \cong \bigoplus H^0\left(\mathcal{X}(1), \mathcal{O}\left(\frac{1}{6}\right)\right) \cong K[\mathbf{x}_1, \mathbf{x}_6].$

Local-Global Principles

Modular Forms

Thank you! Questions?