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Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.
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Generalized Fermat Equations

Motivation: Find all integer solutions (x, y, z) to the generalized
Fermat equation

Axp +Bxq = Czr

for A,B,C ∈ Z and p, q, r ≥ 2.
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Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Bxq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to x2 + y2 = z2,
with primitive (gcd(x, y, z) = 1) solutions parametrized by

(x, y, z) =

(
s2 − t2

2
, st,

s2 + t2

2

)
for odd, coprime s > t ≥ 1.
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Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Bxq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (2, 2, 2))

Famously, there are infinitely many integer solutions to x2 + y2 = z2,
with primitive (gcd(x, y, z) = 1) solutions parametrized by

(x, y, z) =

(
s2 − t2

2
, st,

s2 + t2

2

)
for odd, coprime s > t ≥ 1.

(
s2−t2
s2+t2 ,

2st
s2+t2

)
slope = t

s
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Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Bxq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are no integer solutions to xn + yn = zn for
n > 2.

Assume n is prime. If (x0, y0, z0) were such a solution, it would
determine an elliptic curve

E : y2 = x(x− xn0 )(x+ yn0 )

Ribet showed E is not modular. However, Wiles showed all such
elliptic curves are modular, a contradiction.
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Generalized Fermat Equations

Motivation: Find integer solutions to Axp +Bxq = Czr.

Example ((A,B,C) = (1, 1, 1), (p, q, r) = (n, n, n))

Also famously, there are no integer solutions to xn + yn = zn for
n > 2. Assume n is prime. If (x0, y0, z0) were such a solution, it would
determine an elliptic curve

E : y2 = x(x− xn0 )(x+ yn0 )

Ribet showed E is not modular. However, Wiles showed all such
elliptic curves are modular, a contradiction.
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Generalized Fermat Equations

Takeaway: Integer solutions to Axp +Bxq = Czr can be studied
using geometry.
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Generalized Fermat Equations

Here are some more known cases of Axp +Bxq = Czr.
(Beukers, Darmon–Granville) Let χ = 1

p + 1
q + 1

r − 1. The
equation xp + yq = zr has infinitely many primitive solutions
when χ > 0 and finitely many when χ < 0.

(Mordell, Zagier, Edwards) When χ > 0, the primitive solutions to
xp + yq = zr may always be parametrized explicitly (as in the
(2, 2, 2) case).

(Fermat, Euler, et al.) The case χ = 0 only occurs for
(2, 3, 6), (4, 4, 2), (3, 3, 3) and permutations of these. In each case,
descent proves there are finitely many primitive solutions.

(2, 3, 7) was solved by Poonen–Schaeffer–Stoll (2007).

(2, 3, 8), (2, 3, 9) were solved by Bruin (1999, 2004).

etc.
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Generalized Fermat Equations

Question: How do we count solutions to such equations?

One strategy is to form the scheme theoretic locus of nontrivial,
primitive solutions in 3-dimensional space over Z:

S = Spec(Z[x, y, z]/(Axp +Byq − Czr)) r {x = y = z = 0} ⊆ A3
Z.

For any ring R, this keeps track of the R-solutions:

S(R) = {x, y, z ∈ R | Axp +Byq = Czr, nontrivial, primitive}.
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Generalized Fermat Equations

S = Spec(Z[x, y, z]/(Axp +Byq − Czr)) r {x = y = z = 0} ⊆ A3
Z

Let G be the group of symmetries of S. (G = Gm · (µp × µq × µr))

We can form the quotient X = S/G whose points are exactly the
equivalence classes of solutions:

X(R) = {x, y, z ∈ R | Axp +Byq = Czr, nontriv., prim.}/ ∼
where g · (x, y, z) ∼ (x, y, z).

Upside: these are easier to count than S(R).
Downside: the geometry of X is bad!
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Generalized Fermat Equations

S = Spec(Z[x, y, z]/(Axp +Byq − Czr)) r {x = y = z = 0} ⊆ A3
Z

Let G be the group of symmetries of S. (G = Gm · (µp × µq × µr))

We can form the quotient stack X = [S/G] whose points are exactly
the groupoid of solutions:

X (R) : objects: nontriv., prim. solutions to Axp +Byq = Czr

morphisms: (x, y, z)
g−→ g · (x, y, z).

Upside: these are easier to count than S(R).
Downside: none - stacks are awesome!
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Stacks

Problem: all sorts of information is lost when we consider quotients.

BZ/2Z

fold
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Stacks

Solution: Keep track of extra automorphisms using groupoids.

BZ/2Z

fold
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Stacks

A groupoid is a category with only isomorphisms.

• • •

Main example: for a group G, BG has one object • and one
morphisms for every g ∈ G:

•g ∈ G

A stack is a functor X : Ring→ Groupoid that assigns to each ring R
a groupoid X (R).

Moreover, it must satisfy descent: for any cover∗ {R→ Si}, the
objects/morphisms of X (R) are determined by those of {X (Si)}.
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Stacks

A stack is a functor X : Ring→ Groupoid satisfying descent.

Example

For our plane curve X : y2 = x, groupoids remember automorphisms
like (x, y)↔ (x,−y)

BZ/2Z

fold

Here, each downstairs “point” is obtained by collapsing upstairs
points together and identifying morphisms.
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Stacks

A stack is a functor X : Ring→ Groupoid satisfying descent.

Example

More generally, for a group G acting on a space Y , we can form the
quotient stack [Y/G] whose R-points are the groupoid of G-orbits:

Y• • • • •

[Y/G]• • • • •

Special case: [∗/G] = BG.
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Stacky Curves

Here’s a technical definition of a stacky curve:

Definition
A stacky curve is a smooth, separated, connected stack
X : Ring→ Groupoid satisfying:

1 X has an underlying coarse moduli scheme X with a map
π : X → X (collapse the groupoid to a set).

2 π is an isomorphism away from a finite set of points.
3 X is 1-dimensional (aka a curve).
4 There is an étale surjection U → X where U is a scheme.
5 The diagonal ∆X : X → X ×X is representable.
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Stacky Curves

Here’s a more informal definition though:

A stacky curve X consists of an ordinary curve X, together with a
finite number of marked points P1, . . . , Pn, each of which is decorated
with a finite automorphism group Gi.

Over C (or Q, or a number field), the groups Gi are cyclic, so
Gi
∼= Z/eiZ and we can keep track of this data with a cartoon like this:

X
e1 e2 e3 · · · en
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Stacky Curves

Here’s a cartoon of our folded parabola:

2
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Stacky Curves

Here’s a cartoon of a stacky curve with coarse space P1:

16 5 3 60



Generalized Fermat Equations Stacky Curves Local-Global Principles Modular Forms

Stacky Curves

Here’s a cartoon of our stacky curve [S/G], where S = primitive
integer solutions to Axp +Bxq = Czr:

p q r
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Generalized Fermat Equations, Revisited

To find solutions to Axp +Bxq = Czr, we can exploit the geometry of
X = [S/G]:

X

C0C1 C2
twist twist
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Generalized Fermat Equations, Revisited

To find solutions to Axp +Bxq = Czr, we can exploit the geometry of
X = [S/G]:

X

C0C1 C2
twist twist

(1) Find a nice map C0 → X from a curve C0 whose points are easy
to find (e.g. a conic).
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Generalized Fermat Equations, Revisited

To find solutions to Axp +Bxq = Czr, we can exploit the geometry of
X = [S/G]:

X

C0C1 C2
twist twist

(1) Find a nice map C0 → X from a curve C0 whose points are easy
to find (e.g. a conic).
(2) Compute all twists of C0 and their points.
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Generalized Fermat Equations, Revisited

To find solutions to Axp +Bxq = Czr, we can exploit the geometry of
X = [S/G]:

X

C0C1 C2
twist twist

(1) Find a nice map C0 → X from a curve C0 whose points are easy
to find (e.g. a conic).
(2) Compute all twists of C0 and their points.
(3) Use descent to identify points on X .
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Generalized Fermat Equations, Revisited

Example

For X : x2 + y2 = z2, there is an étale map

X

P1

and P1 has infinitely many points which descend, so there are
infinitely many primitive Pythagorean triples.



Generalized Fermat Equations Stacky Curves Local-Global Principles Modular Forms

Generalized Fermat Equations, Revisited

Example (Poonen–Schaeffer–Stoll)

For X : x2 + y3 = z7, there is an étale map

X

CC1 C2 · · · C10
twist twist

where C is the Klein quartic, defined by x3y+ y3 + x = 0. Descending
points from C and its 10 twists gives 16 primitive solutions:

(±1,−1, 0), (±1, 0, 1), (0,±1,±1), (±3,−2, 1),

(±71,−17, 2), (±2213459, 1414, 65), (±15312283, 9262, 113),

(±21063928,−76271, 17).



Generalized Fermat Equations Stacky Curves Local-Global Principles Modular Forms

Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if
X(Q) 6= ∅ is equivalent to X(Qp) 6= ∅ for all completions Qp, p ≤ ∞.

Let g = g(X) be the genus of X. It is known that:
(Hasse–Minkowski) If g = 0, the LGP holds for X.

There are counterexamples to the LGP for all g > 0.
For example, X : 2y2 = 1− 17x4.
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Local-Global Principle for Stacky Curves

For a stacky curve X , we pose the local-global principle for integral
points:

is X (Z) 6= ∅ equivalent to X (Zp) 6= ∅ for all completions Zp?

This time, the genus g = g(X ) can be rational:

g(X ) = g(X) +
1

2

n∑
i=1

ei − 1

ei

where X is the coarse space and e1, . . . , en are the orders of the
automorphisms groups at the finite number of stacky points.

When X is a wild stacky curve, I proved a more general formula for
g(X ).
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Local-Global Principle for Stacky Curves

Example

Our cartoon from before is a stacky curve with genus
g = 1

2

(
15
16 + 4

5 + 2
3 + 59

60

)
= 271

160 .

16 5 3 60

Example

Our stacky curve [S/G], where S = primitive integer solutions to
Axp +Bxq = Czr, has genus g = 1

2

(
3− 1

p −
1
q −

1
r

)
.

p q r

For example, the (2, 3, 7) curve has genus g = 85
84 .
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Local-Global Principle for Stacky Curves

For X = [S/G] where S : Axp +Byq = Czr, g = 1
2

(
3− 1

p −
1
q −

1
r

)
.

Theorem (Bhargava–Poonen)
1 If g < 1

2 , the LGP holds.
2 There are counterexamples to the LGP when g = 1

2 .

Theorem (Darmon–Granville)

In the (2, 2, n) case, with g = n−1
n , there are counterexamples to the

LGP.

Joint work with Duque-Rosero, Keyes, Roy, Sankar, Wang (in
progress): a complete solution in the (2, 2, n) case.
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Thank you!

Questions?
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Another Example of a Stacky Curve

Here’s another important stacky curve:

4 6
X (1)

Fact: X (1) ∼=M1,1, the compactified moduli stack of elliptic curves.
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Another Example of a Stacky Curve

Here’s another important stacky curve:

4 6
X (1)

Fact: X (1) ∼=M1,1, the compactified moduli stack of elliptic curves.

More generally, there are modular curves X (N),X0(N),X1(N),
etc. parametrizing elliptic curves with level structure.

Enough about those for now, but remember the Klein quartic?
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Generalized Fermat Equations, Revisited

Example (Poonen–Schaeffer–Stoll)

For X : x2 + y3 = z7, there is an étale map

X

CC1 C2 · · · C10
twist twist

where C is the Klein quartic, defined by x3y+ y3 + x = 0. Descending
points from C and its 10 twists gives 16 primitive solutions:

(±1,−1, 0), (±1, 0, 1), (0,±1,±1), (±3,−2, 1),

(±71,−17, 2), (±2213459, 1414, 65), (±15312283, 9262, 113),

(±21063928,−76271, 17).
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Another Example of a Stacky Curve

Here’s another important stacky curve:

4 6
X (1)

Fact: X (1) ∼=M1,1, the compactified moduli stack of elliptic curves.

More generally, there are modular curves X (N),X0(N),X1(N),
etc. parametrizing elliptic curves with level structure.

Enough about those for now, but remember the Klein quartic? It’s
secretly isomorphic to X (7).
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Another Example of a Stacky Curve

Here’s another important stacky curve:

4 6
X (1)

Fact: X (1) ∼=M1,1, the compactified moduli stack of elliptic curves.

Fact 2: Modular curves give rise to modular forms.
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Modular Forms

Let h = {z ∈ C : im(z) > 0} be the upper half-plane in C.

Definition
A modular form of weight 2k is a holomorphic function f : h→ C
such that

1 For all g =

(
a b
c d

)
∈ SL2(Z), f(z) = (cz + d)−2kf(gz).

2 f is holomorphic at∞.

Informal version: modular forms are highly symmetric holomorphic
functions on the upper half-plane in C.
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Modular Forms

Given a modular form f : h→ C, we can define a differential form
ω = f(z) dzk.

By the symmetry of f , ω is not just defined on the upper half-plane,
but on the quotient h/SL2(Z).

Compactifying by adding a point at∞, this quotient h/SL2(Z)
becomes isomorphic to X (1), the moduli stack of elliptic curves.

Upshot: modular forms act like “functions” on the moduli stack X (1).



Generalized Fermat Equations Stacky Curves Local-Global Principles Modular Forms

Katz Modular Forms

This allows one to define modular forms over any field K, as
differential forms on the moduli stack X (1) of elliptic curves over K.

For an elliptic curve E over an arbitrary field K, let ωE/K be the
pullback of the canonical line bundle Ω1

E/K to SpecK.

Definition
A Katz modular form of weight k over K is a choice of section
f(E/A) of ω⊗k/2E/A for every K-algebra A and elliptic curve E/A
satisfying:

1 f(E/A) is constant on isomorphism class of E/A.
2 (Naturality) f commutes with pullback along A→ B.
3 (Holomorphic condition) The “q-expansion” f(ETate) has

coefficients in K ⊗ Z[[q]].
Cusp forms are modular forms with q-expansion coefficients in
K ⊗ qZ[[q]].
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Katz Modular Forms

Pocket version:
Pull back Ω1

E/K along basepoint O : SpecK ↪→ E to get ωE/K .

Choose compatible sections f(E/A) ∈ H0(A,ω
⊗k/2
E/A ).

Enforce holomorphic (and cusp) conditions with a geometric
version of q-expansion principle.

Theorem
LetMk be the space of weight k modular forms over K. Then there
is an isomorphism

Mk
∼−−→ H0(X (1),ΩX (1)/K(∆)k/2), f 7−→ f dzk/2

where X (1) is the moduli stack of elliptic curves and ∆ =∞ is the
cusp divisor.

Since X (1) ∼= P(4, 6)***, the graded ring of modular forms is⊕
k≥0

Mk
∼= K[x4, x6].



Generalized Fermat Equations Stacky Curves Local-Global Principles Modular Forms

Katz Modular Forms

Pocket version:
Pull back Ω1

E/K along basepoint O : SpecK ↪→ E to get ωE/K .

Choose compatible sections f(E/A) ∈ H0(A,ω
⊗k/2
E/A ).

Enforce holomorphic (and cusp) conditions with a geometric
version of q-expansion principle.

Theorem
LetMk be the space of weight k modular forms over K. Then there
is an isomorphism

Mk
∼−−→ H0(X (1),ΩX (1)/K(∆)k/2), f 7−→ f dzk/2

where X (1) is the moduli stack of elliptic curves and ∆ =∞ is the
cusp divisor.
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Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the
space of mod p modular forms using the stacky structure of X (1) and
other modular curves over Fp.

For p > 3, the story for X (1) is the same as before:

4 6
X (1)

and
⊕
Mk
∼= Fp[x4, x6] (originally due to Edixhoven).

However, over F2 and F3, the stacky structure of X (1) looks different:

G

nonabelian!
X (1)
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Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the
space of mod p modular forms using the stacky structure of X (1) and
other modular curves over Fp.

Even before considering the stacky structure, we have:

Theorem (Katz–Mazur)

There is a modular form A ∈Mp−1(1;Fp) (the Hasse invariant)
satisfying Frob∗p f = Af for every f ∈Mk. Moreover,

For p 6= 2, 3, A ∼= Ep−1 mod p, the weight p− 1 Eisenstein series.
For p = 2, 3, A is not the mod p reduction of any classical
modular form.
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Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the
space of mod p modular forms using the stacky structure of X (1) and
other modular curves over Fp.

Recall: Mk
∼= H0(X (1),Ω(∆)k/2). Main tool to compute Ω = O(KX ):

Theorem (K. 2021)

For a (tame or wild) stacky curve X with coarse moduli space
π : X → X, their canonical divisors satisfy

KX = π∗KX +
∑

P∈X (K)

∞∑
i=0

(|GP,i| − 1)P

where GP,i are the higher ramification groups at P .



Generalized Fermat Equations Stacky Curves Local-Global Principles Modular Forms

Modular Forms Mod p

Theorem (K. 2021)

KX = π∗KX +
∑

P∈X (K)

∞∑
i=0

(|GP,i| − 1)P .

Corollary

For the tame stacky curve X (1) over Fp, p > 3,

4 6
X (1)

we have KX (1) = −2∞+ 3P + 5Q.

Therefore
⊕
Mk
∼=
⊕
H0
(
X (1),O

(
7
12

)) ∼= K[x4, x6].
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Modular Forms Mod p

Theorem (K. 2021)

KX = π∗KX +
∑

P∈X (K)

∞∑
i=0

(|GP,i| − 1)P .

Corollary (K.–Zureick-Brown 2023+ε)

For the wild stacky curve X (1) over F3,

Z/4Z n Z/3Z
X (1)

we have KX (1) = −2∞+ 7P .

Therefore
⊕
Mk
∼=
⊕
H0
(
X (1),O

(
1
6

)) ∼= K[x1, x6].
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Modular Forms Mod p

Theorem (K. 2021)

KX = π∗KX +
∑

P∈X (K)

∞∑
i=0

(|GP,i| − 1)P .

Corollary (K.–Zureick-Brown 2023+ε)

For the wild stacky curve X (1) over F2,

Z/3Z nQ8
X (1)

we have KX (1) = −2∞+ 14P .

Therefore
⊕
Mk
∼=
⊕
H0
(
X (1),O

(
1
6

)) ∼= K[x1, x6].
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Thank you!

Questions?
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