Arithmetic Geometry and Stacky Curves

Andrew J. Kobin
ajkobin@emory.edu

UGA Number Theory/Arithmetic Geometry Seminar
September 20, 2023

Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.

Generalized Fermat Equations

Motivation: Find all integer solutions (x, y, z) to the generalized Fermat equation

$$
A x^{p}+B x^{q}=C z^{r}
$$

for $A, B, C \in \mathbb{Z}$ and $p, q, r \geq 2$.

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(2,2,2))$

Famously, there are infinitely many integer solutions to $x^{2}+y^{2}=z^{2}$, with primitive $(\operatorname{gcd}(x, y, z)=1)$ solutions parametrized by

$$
(x, y, z)=\left(\frac{s^{2}-t^{2}}{2}, s t, \frac{s^{2}+t^{2}}{2}\right) \quad \text { for odd, coprime } s>t \geq 1
$$

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(2,2,2))$

Famously, there are infinitely many integer solutions to $x^{2}+y^{2}=z^{2}$, with primitive $(\operatorname{gcd}(x, y, z)=1)$ solutions parametrized by

$$
(x, y, z)=\left(\frac{s^{2}-t^{2}}{2}, \text { st, } \frac{s^{2}+t^{2}}{2}\right) \text { for odd, coprime } s>t \geq 1
$$

P.
@p_blade_
Wow. Another day as an adult without using the Pythagorean
Theorem.

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(2,2,2))$

Famously, there are infinitely many integer solutions to $x^{2}+y^{2}=z^{2}$, with primitive $(\operatorname{gcd}(x, y, z)=1)$ solutions parametrized by

$$
(x, y, z)=\left(\frac{s^{2}-t^{2}}{2}, s t, \frac{s^{2}+t^{2}}{2}\right) \quad \text { for odd, coprime } s>t \geq 1
$$

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(n, n, n))$

Also famously, there are no integer solutions to $x^{n}+y^{n}=z^{n}$ for $n>2$.

Generalized Fermat Equations

Motivation: Find integer solutions to $A x^{p}+B x^{q}=C z^{r}$.

Example $((A, B, C)=(1,1,1),(p, q, r)=(n, n, n))$

Also famously, there are no integer solutions to $x^{n}+y^{n}=z^{n}$ for $n>2$. Assume n is prime. If (x_{0}, y_{0}, z_{0}) were such a solution, it would determine an elliptic curve

Ribet showed E is not modular. However, Wiles showed all such elliptic curves are modular, a contradiction.

Generalized Fermat Equations

Takeaway: Integer solutions to $A x^{p}+B x^{q}=C z^{r}$ can be studied using geometry.

Generalized Fermat Equations

Here are some more known cases of $A x^{p}+B x^{q}=C z^{r}$.

- (Beukers, Darmon-Granville) Let $\chi=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1$. The equation $x^{p}+y^{q}=z^{r}$ has infinitely many primitive solutions when $\chi>0$ and finitely many when $\chi<0$.

Generalized Fermat Equations

Here are some more known cases of $A x^{p}+B x^{q}=C z^{r}$.

- (Beukers, Darmon-Granville) Let $\chi=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1$. The equation $x^{p}+y^{q}=z^{r}$ has infinitely many primitive solutions when $\chi>0$ and finitely many when $\chi<0$.
- (Mordell, Zagier, Edwards) When $\chi>0$, the primitive solutions to $x^{p}+y^{q}=z^{r}$ may always be parametrized explicitly (as in the $(2,2,2)$ case).
- (Fermat, Euler, et al.) The case $\chi=0$ only occurs for $(2,3,6),(4,4,2),(3,3,3)$ and permutations of these. In each case, descent proves there are finitely many primitive solutions.
- $(2,3,7)$ was solved by Poonen-Schaeffer-Stoll (2007).
- $(2,3,8),(2,3,9)$ were solved by Bruin $(1999,2004)$.
- etc.

Generalized Fermat Equations

Question: How do we count solutions to such equations?

Generalized Fermat Equations

Question: How do we count solutions to such equations?
One strategy is to form the scheme theoretic locus of nontrivial, primitive solutions in 3-dimensional space over \mathbb{Z} :

$$
S=\operatorname{Spec}\left(\mathbb{Z}[x, y, z] /\left(A x^{p}+B y^{q}-C z^{r}\right)\right) \backslash\{x=y=z=0\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3} .
$$

For any ring R, this keeps track of the R-solutions:

$$
S(R)=\left\{x, y, z \in R \mid A x^{p}+B y^{q}=C z^{r}, \text { nontrivial, primitive }\right\} .
$$

Generalized Fermat Equations

$$
S=\operatorname{Spec}\left(\mathbb{Z}[x, y, z] /\left(A x^{p}+B y^{q}-C z^{r}\right)\right) \backslash\{x=y=z=0\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3}
$$

Let G be the group of symmetries of $S .\left(G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)\right)$

Generalized Fermat Equations

$$
S=\operatorname{Spec}\left(\mathbb{Z}[x, y, z] /\left(A x^{p}+B y^{q}-C z^{r}\right)\right) \backslash\{x=y=z=0\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3}
$$

Let G be the group of symmetries of $S .\left(G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)\right)$
We can form the quotient $X=S / G$ whose points are exactly the equivalence classes of solutions:

$$
\begin{aligned}
X(R) & =\left\{x, y, z \in R \mid A x^{p}+B y^{q}=C z^{r}, \text { nontriv., prim. }\right\} / \sim \\
& \text { where } g \cdot(x, y, z) \sim(x, y, z) .
\end{aligned}
$$

Upside: these are easier to count than $S(R)$. Downside: the geometry of X is bad!

Generalized Fermat Equations

$$
S=\operatorname{Spec}\left(\mathbb{Z}[x, y, z] /\left(A x^{p}+B y^{q}-C z^{r}\right)\right) \backslash\{x=y=z=0\} \subseteq \mathbb{A}_{\mathbb{Z}}^{3}
$$

Let G be the group of symmetries of S. $\left(G=\mathbb{G}_{m} \cdot\left(\mu_{p} \times \mu_{q} \times \mu_{r}\right)\right)$
We can form the quotient stack $\mathcal{X}=[S / G]$ whose points are exactly the groupoid of solutions:
$\mathcal{X}(R)$: objects: nontriv., prim. solutions to $A x^{p}+B y^{q}=C z^{r}$ morphisms: $(x, y, z) \xrightarrow{g} g \cdot(x, y, z)$.

Upside: these are easier to count than $S(R)$. Downside: none - stacks are awesome!

Stacks

Problem: all sorts of information is lost when we consider quotients.

fold

Stacks

Solution: Keep track of extra automorphisms using groupoids.

fold
$B \mathbb{Z} / 2 \mathbb{Z}$

Stacks

A groupoid is a category with only isomorphisms.

Main example: for a group $G, B G$ has one object • and one morphisms for every $g \in G$:

Stacks

A groupoid is a category with only isomorphisms.

Main example: for a group $G, B G$ has one object • and one morphisms for every $g \in G$:

A stack is a functor $\mathcal{X}:$ Ring \rightarrow Groupoid that assigns to each ring R a groupoid $\mathcal{X}(R)$.

Moreover, it must satisfy descent: for any cover* $\left\{R \rightarrow S_{i}\right\}$, the objects/morphisms of $\mathcal{X}(R)$ are determined by those of $\left\{\mathcal{X}\left(S_{i}\right)\right\}$.

Stacks

A stack is a functor $\mathcal{X}:$ Ring \rightarrow Groupoid satisfying descent.

Example

For our plane curve $X: y^{2}=x$, groupoids remember automorphisms like $(x, y) \leftrightarrow(x,-y)$

Here, each downstairs "point" is obtained by collapsing upstairs points together and identifying morphisms.

Stacks

A stack is a functor $\mathcal{X}:$ Ring \rightarrow Groupoid satisfying descent.

Example

More generally, for a group G acting on a space Y, we can form the quotient stack $[Y / G]$ whose R-points are the groupoid of G-orbits:

Special case: $[* / G]=B G$.

Stacky Curves

Here's a technical definition of a stacky curve:

Definition

A stacky curve is a smooth, separated, connected stack
\mathcal{X} : Ring \rightarrow Groupoid satisfying:
(1) \mathcal{X} has an underlying coarse moduli scheme X with a map $\pi: \mathcal{X} \rightarrow X$ (collapse the groupoid to a set).
(2) π is an isomorphism away from a finite set of points.
(3) X is 1-dimensional (aka a curve).
(9) There is an étale surjection $U \rightarrow \mathcal{X}$ where U is a scheme.
(5) The diagonal $\Delta_{\mathcal{X}}: \mathcal{X} \rightarrow \mathcal{X} \times \mathcal{X}$ is representable.

Stacky Curves

Here's a more informal definition though:
A stacky curve \mathcal{X} consists of an ordinary curve X, together with a finite number of marked points P_{1}, \ldots, P_{n}, each of which is decorated with a finite automorphism group G_{i}.

Stacky Curves

Here's a more informal definition though:
A stacky curve \mathcal{X} consists of an ordinary curve X, together with a finite number of marked points P_{1}, \ldots, P_{n}, each of which is decorated with a finite automorphism group G_{i}.

Over \mathbb{C} (or \mathbb{Q}, or a number field), the groups G_{i} are cyclic, so
$G_{i} \cong \mathbb{Z} / e_{i} \mathbb{Z}$ and we can keep track of this data with a cartoon like this:

Stacky Curves

Here's a cartoon of our folded parabola:

Stacky Curves

Here's a cartoon of a stacky curve with coarse space \mathbb{P}^{1} :

Stacky Curves

Here's a cartoon of our stacky curve $[S / G]$, where $S=$ primitive integer solutions to $A x^{p}+B x^{q}=C z^{r}$:

Generalized Fermat Equations, Revisited

To find solutions to $A x^{p}+B x^{q}=C z^{r}$, we can exploit the geometry of $\mathcal{X}=[S / G]:$

Generalized Fermat Equations, Revisited

To find solutions to $A x^{p}+B x^{q}=C z^{r}$, we can exploit the geometry of $\mathcal{X}=[S / G]:$

(1) Find a nice map $C_{0} \rightarrow \mathcal{X}$ from a curve C_{0} whose points are easy to find (e.g. a conic).

Generalized Fermat Equations, Revisited

To find solutions to $A x^{p}+B x^{q}=C z^{r}$, we can exploit the geometry of $\mathcal{X}=[S / G]:$

(1) Find a nice map $C_{0} \rightarrow \mathcal{X}$ from a curve C_{0} whose points are easy to find (e.g. a conic).
(2) Compute all twists of C_{0} and their points.

Generalized Fermat Equations, Revisited

To find solutions to $A x^{p}+B x^{q}=C z^{r}$, we can exploit the geometry of $\mathcal{X}=[S / G]:$

(1) Find a nice map $C_{0} \rightarrow \mathcal{X}$ from a curve C_{0} whose points are easy to find (e.g. a conic).
(2) Compute all twists of C_{0} and their points.
(3) Use descent to identify points on \mathcal{X}.

Generalized Fermat Equations, Revisited

Example

For $\mathcal{X}: x^{2}+y^{2}=z^{2}$, there is an étale map

and \mathbb{P}^{1} has infinitely many points which descend, so there are infinitely many primitive Pythagorean triples.

Generalized Fermat Equations, Revisited

Example (Poonen-Schaeffer-Stoll)

For $\mathcal{X}: x^{2}+y^{3}=z^{7}$, there is an étale map

where C is the Klein quartic, defined by $x^{3} y+y^{3}+x=0$. Descending points from C and its 10 twists gives 16 primitive solutions:

$$
\begin{aligned}
& (\pm 1,-1,0), \quad(\pm 1,0,1), \quad(0, \pm 1, \pm 1), \quad(\pm 3,-2,1), \\
& (\pm 71,-17,2), \quad(\pm 2213459,1414,65), \\
& (\pm 215312283,9262,113), \\
& (\pm 21063928,-76271,17) .
\end{aligned}
$$

Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if $X(\mathbb{Q}) \neq \varnothing$ is equivalent to $X\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all completions $\mathbb{Q}_{p}, p \leq \infty$.

Local-Global Principle for Algebraic Curves

The classic local-global principle for an algebraic curve X asks if $X(\mathbb{Q}) \neq \varnothing$ is equivalent to $X\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all completions $\mathbb{Q}_{p}, p \leq \infty$.

Let $g=g(X)$ be the genus of X. It is known that:

- (Hasse-Minkowski) If $g=0$, the LGP holds for X.
- There are counterexamples to the LGP for all $g>0$. For example, $X: 2 y^{2}=1-17 x^{4}$.

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X}, we pose the local-global principle for integral points:
is $\mathcal{X}(\mathbb{Z}) \neq \varnothing$ equivalent to $\mathcal{X}\left(\mathbb{Z}_{p}\right) \neq \varnothing$ for all completions \mathbb{Z}_{p} ?

Local-Global Principle for Stacky Curves

For a stacky curve \mathcal{X}, we pose the local-global principle for integral points:

$$
\text { is } \mathcal{X}(\mathbb{Z}) \neq \varnothing \text { equivalent to } \mathcal{X}\left(\mathbb{Z}_{p}\right) \neq \varnothing \text { for all completions } \mathbb{Z}_{p} \text { ? }
$$

This time, the genus $g=g(\mathcal{X})$ can be rational:

$$
g(\mathcal{X})=g(X)+\frac{1}{2} \sum_{i=1}^{n} \frac{e_{i}-1}{e_{i}}
$$

where X is the coarse space and e_{1}, \ldots, e_{n} are the orders of the automorphisms groups at the finite number of stacky points.

When \mathcal{X} is a wild stacky curve, I proved a more general formula for $g(\mathcal{X})$.

Local-Global Principle for Stacky Curves

Example

Our cartoon from before is a stacky curve with genus $g=\frac{1}{2}\left(\frac{15}{16}+\frac{4}{5}+\frac{2}{3}+\frac{59}{60}\right)=\frac{271}{160}$.

Example

Our stacky curve $[S / G]$, where $S=$ primitive integer solutions to $A x^{p}+B x^{q}=C z^{r}$, has genus $g=\frac{1}{2}\left(3-\frac{1}{p}-\frac{1}{q}-\frac{1}{r}\right)$.

For example, the $(2,3,7)$ curve has genus $g=\frac{85}{84}$.

Local-Global Principle for Stacky Curves

$$
\text { For } \mathcal{X}=[S / G] \text { where } S: A x^{p}+B y^{q}=C z^{r}, g=\frac{1}{2}\left(3-\frac{1}{p}-\frac{1}{q}-\frac{1}{r}\right) \text {. }
$$

Theorem (Bhargava-Poonen)

(1) If $g<\frac{1}{2}$, the LGP holds.
(2) There are counterexamples to the LGP when $g=\frac{1}{2}$.

Theorem (Darmon-Granville)

In the $(2,2, n)$ case, with $g=\frac{n-1}{n}$, there are counterexamples to the LGP.

Joint work with Duque-Rosero, Keyes, Roy, Sankar, Wang (in progress): a complete solution in the $(2,2, n)$ case.

Thank you!

Questions?

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.
More generally, there are modular curves $\mathcal{X}(N), \mathcal{X}_{0}(N), \mathcal{X}_{1}(N)$, etc. parametrizing elliptic curves with level structure.

Enough about those for now, but remember the Klein quartic?

Generalized Fermat Equations, Revisited

Example (Poonen-Schaeffer-Stoll)

For $\mathcal{X}: x^{2}+y^{3}=z^{7}$, there is an étale map

where C is the Klein quartic, defined by $x^{3} y+y^{3}+x=0$. Descending points from C and its 10 twists gives 16 primitive solutions:

$$
\begin{aligned}
& (\pm 1,-1,0), \quad(\pm 1,0,1), \quad(0, \pm 1, \pm 1), \quad(\pm 3,-2,1), \\
& (\pm 71,-17,2), \quad(\pm 2213459,1414,65), \\
& (\pm 215312283,9262,113), \\
& (\pm 21063928,-76271,17) .
\end{aligned}
$$

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.
More generally, there are modular curves $\mathcal{X}(N), \mathcal{X}_{0}(N), \mathcal{X}_{1}(N)$, etc. parametrizing elliptic curves with level structure.

Enough about those for now, but remember the Klein quartic? It's secretly isomorphic to $\mathcal{X}(7)$.

Another Example of a Stacky Curve

Here's another important stacky curve:

Fact: $\mathcal{X}(1) \cong \overline{\mathcal{M}}_{1,1}$, the compactified moduli stack of elliptic curves.
Fact 2: Modular curves give rise to modular forms.

Modular Forms

Let $\mathfrak{h}=\{z \in \mathbb{C}: \operatorname{im}(z)>0\}$ be the upper half-plane in \mathbb{C}.

Definition

A modular form of weight $2 k$ is a holomorphic function $f: \mathfrak{h} \rightarrow \mathbb{C}$ such that
(1) For all $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}), f(z)=(c z+d)^{-2 k} f(g z)$.
(2) f is holomorphic at ∞.

Modular Forms

$$
\text { Let } \mathfrak{h}=\{z \in \mathbb{C}: \operatorname{im}(z)>0\} \text { be the upper half-plane in } \mathbb{C} \text {. }
$$

Definition

A modular form of weight $2 k$ is a holomorphic function $f: \mathfrak{h} \rightarrow \mathbb{C}$ such that
(1) For all $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}), f(z)=(c z+d)^{-2 k} f(g z)$.
(2) f is holomorphic at ∞.

Informal version: modular forms are highly symmetric holomorphic functions on the upper half-plane in \mathbb{C}.

Modular Forms

Given a modular form $f: \mathfrak{h} \rightarrow \mathbb{C}$, we can define a differential form $\omega=f(z) d z^{k}$.

By the symmetry of f, ω is not just defined on the upper half-plane, but on the quotient $\mathfrak{h} / S L_{2}(\mathbb{Z})$.

Compactifying by adding a point at ∞, this quotient $\overline{\mathfrak{h} / S L_{2}(\mathbb{Z})}$ becomes isomorphic to $\mathcal{X}(1)$, the moduli stack of elliptic curves.

Upshot: modular forms act like "functions" on the moduli stack $\mathcal{X}(1)$.

Katz Modular Forms

This allows one to define modular forms over any field K, as differential forms on the moduli stack $\mathcal{X}(1)$ of elliptic curves over K.

For an elliptic curve E over an arbitrary field K, let $\omega_{E / K}$ be the pullback of the canonical line bundle $\Omega_{E / K}^{1}$ to Spec K.

Definition

A Katz modular form of weight k over K is a choice of section $f(E / A)$ of $\omega_{E / A}^{\otimes k / 2}$ for every K-algebra A and elliptic curve E / A satisfying:
(1) $f(E / A)$ is constant on isomorphism class of E / A.
(2) (Naturality) f commutes with pullback along $A \rightarrow B$.
(3) (Holomorphic condition) The " q-expansion" $f\left(E_{\text {Tate }}\right)$ has coefficients in $K \otimes \mathbb{Z}[[q]]$.
Cusp forms are modular forms with q-expansion coefficients in $K \otimes q \mathbb{Z}[[q]]$.

Katz Modular Forms

Pocket version:

- Pull back $\Omega_{E / K}^{1}$ along basepoint O : Spec $K \hookrightarrow E$ to get $\omega_{E / K}$.
- Choose compatible sections $f(E / A) \in H^{0}\left(A, \omega_{E / A}^{\otimes k / 2}\right)$.
- Enforce holomorphic (and cusp) conditions with a geometric version of q-expansion principle.

Katz Modular Forms

Pocket version:

- Pull back $\Omega_{E / K}^{1}$ along basepoint O : Spec $K \hookrightarrow E$ to get $\omega_{E / K}$.
- Choose compatible sections $f(E / A) \in H^{0}\left(A, \omega_{E / A}^{\otimes k / 2}\right)$.
- Enforce holomorphic (and cusp) conditions with a geometric version of q-expansion principle.

Theorem

Let \mathcal{M}_{k} be the space of weight k modular forms over K. Then there is an isomorphism

$$
\mathcal{M}_{k} \xrightarrow{\sim} H^{0}\left(\mathcal{X}(1), \Omega_{\mathcal{X}(1) / K}(\Delta)^{k / 2}\right), \quad f \longmapsto f d z^{k / 2}
$$

where $\mathcal{X}(1)$ is the moduli stack of elliptic curves and $\Delta=\infty$ is the cusp divisor.

Since $\mathcal{X}(1) \cong \mathbb{P}(4,6)^{* * *}$, the graded ring of modular forms is

$$
\bigoplus_{k \geq 0} \mathcal{M}_{k} \cong K\left[x_{4}, x_{6}\right]
$$

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

For $p>3$, the story for $\mathcal{X}(1)$ is the same as before:

and $\bigoplus \mathcal{M}_{k} \cong \mathbb{F}_{p}\left[x_{4}, x_{6}\right]$ (originally due to Edixhoven).
However, over \mathbb{F}_{2} and \mathbb{F}_{3}, the stacky structure of $\mathcal{X}(1)$ looks different:

Modular Forms Mod p

Abstract

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

Even before considering the stacky structure, we have:

Theorem (Katz-Mazur)

There is a modular form $A \in \mathcal{M}_{p-1}\left(1 ; \mathbb{F}_{p}\right)$ (the Hasse invariant) satisfying Frob ${ }_{p}^{*} f=A f$ for every $f \in \mathcal{M}_{k}$. Moreover,

- For $p \neq 2,3, A \cong E_{p-1} \bmod p$, the weight $p-1$ Eisenstein series.
- For $p=2,3, A$ is not the $\bmod p$ reduction of any classical modular form.

Modular Forms Mod p

Joint work with D. Zureick-Brown (in progress): describe the space of $\bmod p$ modular forms using the stacky structure of $\mathcal{X}(1)$ and other modular curves over \mathbb{F}_{p}.

Recall: $\mathcal{M}_{k} \cong H^{0}\left(\mathcal{X}(1), \Omega(\Delta)^{k / 2}\right)$. Main tool to compute $\Omega=\mathcal{O}\left(K_{\mathcal{X}}\right)$:

Theorem (K. 2021)

For a (tame or wild) stacky curve \mathcal{X} with coarse moduli space $\pi: \mathcal{X} \rightarrow X$, their canonical divisors satisfy

$$
K_{\mathcal{X}}=\pi^{*} K_{X}+\sum_{P \in \mathcal{X}(K)} \sum_{i=0}^{\infty}\left(\left|G_{P, i}\right|-1\right) P
$$

where $G_{P, i}$ are the higher ramification groups at P.

Modular Forms Mod p

Theorem (K. 2021)

$K_{\mathcal{X}}=\pi^{*} K_{X}+\sum_{P \in \mathcal{X}(K)} \sum_{i=0}^{\infty}\left(\left|G_{P, i}\right|-1\right) P$.

Corollary

For the tame stacky curve $\mathcal{X}(1)$ over $\mathbb{F}_{p}, p>3$,

we have $K_{\mathcal{X}(1)}=-2 \infty+3 P+5 Q$.
Therefore $\bigoplus \mathcal{M}_{k} \cong \bigoplus H^{0}\left(\mathcal{X}(1), \mathcal{O}\left(\frac{7}{12}\right)\right) \cong K\left[x_{4}, x_{6}\right]$.

Modular Forms Mod p

Theorem (K. 2021)

$$
K_{\mathcal{X}}=\pi^{*} K_{X}+\sum_{P \in \mathcal{X}(K)} \sum_{i=0}^{\infty}\left(\left|G_{P, i}\right|-1\right) P
$$

Corollary (K.-Zureick-Brown 2023+e)

For the wild stacky curve $\mathcal{X}(1)$ over \mathbb{F}_{3},

$$
\longleftrightarrow \mathbb{Z} / 4 \mathbb{Z} \ltimes \mathbb{Z} / 3 \mathbb{Z}
$$

we have $K_{\mathcal{X}(1)}=-2 \infty+7 P$.
Therefore $\bigoplus \mathcal{M}_{k} \cong \bigoplus H^{0}\left(\mathcal{X}(1), \mathcal{O}\left(\frac{1}{6}\right)\right) \cong K\left[x_{1}, x_{6}\right]$.

Modular Forms Mod p

Theorem (K. 2021)

$$
K_{\mathcal{X}}=\pi^{*} K_{X}+\sum_{P \in \mathcal{X}(K)} \sum_{i=0}^{\infty}\left(\left|G_{P, i}\right|-1\right) P
$$

Corollary (K.-Zureick-Brown 2023+e)

For the wild stacky curve $\mathcal{X}(1)$ over \mathbb{F}_{2},

$$
\longleftrightarrow \stackrel{\mathbb{Z} / 3 \mathbb{Z} \ltimes Q_{8}}{\longleftrightarrow} \mathcal{X}(1)
$$

we have $K_{\mathcal{X}(1)}=-2 \infty+14 P$.
Therefore $\bigoplus \mathcal{M}_{k} \cong \bigoplus H^{0}\left(\mathcal{X}(1), \mathcal{O}\left(\frac{1}{6}\right)\right) \cong K\left[x_{1}, x_{6}\right]$.

Thank you!

Questions?

