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Dirichlet’s Theorem
Polynomial factorization

Galois Theory

Density Theorems
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Question to think about:

For a given n ∈ N, when is x2 + ny2 prime? And when is y2 + nx2

also prime?
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Dirichlet’s Theorem

Recall:

Theorem (Dirichlet)

For every pair of relatively prime integers a and m, there are infinitely
many primes of the form km+ a.

In other words, the set

S = {p prime | p ≡ a (mod m)}

is infinite.
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Another view of Dirichlet’s Theorem

Definition
A set S of prime numbers has Dirichlet density δ if∑

p∈S

1

ps
∼ −δ log(s− 1).

This is equal to the natural density

lim
x→∞

#{p ∈ S : p ≤ x}
#{p prime : p ≤ x}

if both exist*.

*If S has a natural density, then δ(S) exists. The converse is false.
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Another view of Dirichlet’s Theorem

Definition
A set S of prime numbers has Dirichlet density δ if∑

p∈S

1

ps
∼ −δ log(s− 1).

Fact: If δ(S) > 0 then S is an infinite set.
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Another view of Dirichlet’s Theorem

Dirichlet’s Theorem (1837)

Let a and m be positive integers so that gcd(a,m) = 1. Then the set

S = {p prime | p ≡ a (mod m)}

has density δ(S) = 1
φ(m) and in particular S is infinite.

Dirichlet originally proved this using L-series.
We will use the Čebotarev density theorem.



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Another view of Dirichlet’s Theorem

Dirichlet’s Theorem (1837)

Let a and m be positive integers so that gcd(a,m) = 1. Then the set

S = {p prime | p ≡ a (mod m)}

has density δ(S) = 1
φ(m) and in particular S is infinite.

Dirichlet originally proved this using L-series.
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Polynomial Factorization

Switching gears...
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Polynomial Factorization

Question

Given a polynomial f(x) with integer coefficients, how does f factor
modulo different primes p?
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Question
How does f factor mod p?

Example

Let f(x) = x4 − x− 1.

Some decomposition patterns of f mod p for different primes:

f ≡ (x3 + 3x2 + 2x+ 5)(x+ 4) (mod 7) (3,1)
f ≡ x4 − x− 1 (mod 47) (4)
f ≡ (x2 + 34x+ 24)(x2 + 67x+ 21) (mod 101) (2,2)
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Question
How does f factor mod p?

Example

Let f(x) = x4 − x− 1. . . . f is irreducible!

Some decomposition patterns of f mod p for different primes:

f ≡ (x3 + 3x2 + 2x+ 5)(x+ 4) (mod 7) (3,1)

f ≡ x4 − x− 1 (mod 47) (4)

f ≡ (x2 + 34x+ 24)(x2 + 67x+ 21) (mod 101) (2,2)
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Question
How does f factor mod p?

Example

Let f(x) = x4 − x− 1.

f factors into the partitions of n = 4 with the following frequencies:

decomposition proportion of primes

4 1/4
3,1 1/3
2,2 1/8

2,1,1 1/4
1,1,1,1 1/24
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Question
How does f factor mod p?

Example

Let f(x) = x4 − x− 1.

Recall:

f ≡ (x3 + 3x2 + 2x+ 5)(x+ 4) (mod 7) (3,1)
f ≡ x4 − x− 1 (mod 47) (4)
f ≡ (x2 + 34x+ 24)(x2 + 67x+ 21) (mod 101) (2,2)

There’s a group acting on the roots of f . . .
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Galois Theory

Switching gears again...
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Galois Theory

Let f(x) be an irreducible polynomial with coefficients in Z.

Let {α1, . . . , αn} be the distinct complex roots of f .
There is a group Gal(f) called the Galois group of f that acts on
f by permuting the αi in some fashion.
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Galois Theory

Let f(x) be an irreducible polynomial with coefficients in Z.
Let {α1, . . . , αn} be the distinct complex roots of f .
There is a group Gal(f) called the Galois group of f that acts on
f by permuting the αi in some fashion.

This is best understood in the context of field extensions.
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Galois Theory

Definition
If K is a field, a field extension of K is a field L containing K.
This is denoted L/K.

Definition

The Galois group Gal(L/K) is the group of automorphisms of L that
fix K. *****
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Galois Theory

Definition

Let f(x) ∈ Z[x]. A splitting field for f is a field extension K/Q such
that f can be written as a product of linear factors in K[x]:

f(x) =
∏

(x− βi), βi ∈ K.

Definition

The Galois group of a polynomial f(x) ∈ Z[x] is Gal(K/Q) where
K is a splitting field for f .
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Galois Theory

Congratulations!
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Back to polynomials
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Recall the question: how does f(x) factor mod p?

f(x) ≡ f1(x)f2(x) · · · fr(x) (mod p) where fi ∈ Z[x] are distinct,
irreducible.
Let di = deg fi for each i.
We say f has decomposition type (d1, d2, . . . , dr) mod p.

Question

For a given prime p, is there a permutation σp ∈ Gal(f) that has the
same cycle type as f ’s decomposition mod p?

Definition

If σ ∈ Gal(f) has the same cycle type as the decomposition of f mod
p, σ is called a Frobenius element of p.
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Question

For a given prime p, can we find a permutation σ ∈ Gal(f) that has
the same cycle type as f ’s decomposition mod p?

Example (Stevenhagen, Lenstra)

Consider f(x) = xm − 1 and a prime p - m.

For m = 12, the primes
and decomposition types look like:

p ≡ 1 (mod 12)←→ (1,1,1,1,1,1,1,1,1,1,1,1)
p ≡ 5 (mod 12)←→ (1,1,1,1,2,2,2,2)
p ≡ 7 (mod 12)←→ (1,1,1,1,1,1,2,2,2)
p ≡ 11 (mod 12)←→ (1,1,2,2,2,2,2)

So according to Dirichlet’s Theorem, there are infinitely many primes
corresponding to each cycle type.
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Frobenius’ Density Theorem

Theorem (Frobenius)

Let f ∈ Z[x] with Galois group G = Gal(f). Suppose S is the set of
primes p that have Frobenius elements Frob(p) of some given cycle
type r. Then the Dirichlet density of S is

δ(S) =
T

|G|

where T = #{σ ∈ G : σ has cycle type r}.

So if there exists a permutation σ ∈ G with a given cycle type, then f
has that particular decomposition mod p for infinitely many primes p.



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Frobenius’ Density Theorem

Theorem (Frobenius)

Let f ∈ Z[x] with Galois group G = Gal(f).

Suppose S is the set of
primes p that have Frobenius elements Frob(p) of some given cycle
type r. Then the Dirichlet density of S is

δ(S) =
T

|G|

where T = #{σ ∈ G : σ has cycle type r}.

So if there exists a permutation σ ∈ G with a given cycle type, then f
has that particular decomposition mod p for infinitely many primes p.



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Frobenius’ Density Theorem

Theorem (Frobenius)

Let f ∈ Z[x] with Galois group G = Gal(f). Suppose S is the set of
primes p that have Frobenius elements Frob(p) of some given cycle
type r.

Then the Dirichlet density of S is

δ(S) =
T

|G|

where T = #{σ ∈ G : σ has cycle type r}.

So if there exists a permutation σ ∈ G with a given cycle type, then f
has that particular decomposition mod p for infinitely many primes p.



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Frobenius’ Density Theorem

Theorem (Frobenius)

Let f ∈ Z[x] with Galois group G = Gal(f). Suppose S is the set of
primes p that have Frobenius elements Frob(p) of some given cycle
type r. Then the Dirichlet density of S is

δ(S) =
T

|G|

where T = #{σ ∈ G : σ has cycle type r}.

So if there exists a permutation σ ∈ G with a given cycle type, then f
has that particular decomposition mod p for infinitely many primes p.



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Frobenius’ Density Theorem

Theorem (Frobenius)

Let f ∈ Z[x] with Galois group G = Gal(f). Suppose S is the set of
primes p that have Frobenius elements Frob(p) of some given cycle
type r. Then the Dirichlet density of S is

δ(S) =
T

|G|

where T = #{σ ∈ G : σ has cycle type r}.

So if there exists a permutation σ ∈ G with a given cycle type, then f
has that particular decomposition mod p for infinitely many primes p.



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Questions you should be asking:

Can this be generalized?
i.e. is there a canonical choice of σ for each prime?
Why in the world should I care?
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Čebotarev’s Density Theorem

Theorem (Čebotarev)

Let f ∈ Z[x] with Galois group G = Gal(f).

Take an element σ ∈ G
and denote its conjugacy class by C. Then the set S of all primes p
such that Frob(p) ∈ C has density

δ(S) =
|C|
|G|

.

This is pretty much the best we could hope for.

Notice that when G is abelian, this says each prime has a unique
Frobenius element in G.
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Consequences

Corollary

Given a field extension K/Q whose Galois group Gal(K/Q) is
abelian, fix an element σ ∈ Gal(K/Q). Then the set S of primes p
such that Frob(p) = σ has density

δ(S) =
1

|G|

and in particular G is infinite.

Corollary

For a polynomial f(x) ∈ Z[x], there are infinitely many primes p such
that f splits completely into a product of linear factors mod p.
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Consequences

Example

Let
f(x) = x9+3x8−18x7−38x6+93x5+147x4−161x3−201x2+57x+53.

Oh god, why??

Well, it turns out that Gal(f) ∼= Z/3Z× Z/3Z

You didn’t answer my question...

I’ll tell you! If you want to know how this polynomial corresponds to
the group Z/3Z× Z/3Z, ask me later.
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Consequences

Example

Let
f(x) = x9+3x8−18x7−38x6+93x5+147x4−161x3−201x2+57x+53.

G = Z/3Z× Z/3Z has:
Nine conjugacy classes (it’s abelian!)
Five divisions*
Two cycle types

So it’s useful to illustrate the difference between Frobenius’ density
theorem and Čebotarev’s density theorem.
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Consequences

Example

Let
f(x) = x9+3x8−18x7−38x6+93x5+147x4−161x3−201x2+57x+53.

The distribution of primes among the cycle types:

(1) 1/9
(3,3,3) 8/9



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Consequences

Example

Let
f(x) = x9+3x8−18x7−38x6+93x5+147x4−161x3−201x2+57x+53.

The distribution of primes among the cycle types:

(1) 1/9
(3,3,3) 8/9



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Consequences

Example

Let
f(x) = x9+3x8−18x7−38x6+93x5+147x4−161x3−201x2+57x+53.

The distribution of primes among the divisions:

D1 1/9
D2 2/9
D3 2/9
D4 2/9
D5 2/9
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Consequences

Example

Let
f(x) = x9+3x8−18x7−38x6+93x5+147x4−161x3−201x2+57x+53.

The distribution of primes among the conjugacy classes:

id 1/9
σ1 1/9
σ2 1/9
σ3 1/9
σ4 1/9
σ5 1/9
σ6 1/9
σ7 1/9
σ8 1/9
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Consequences

Example

Let K = Q(i). (These are all complex numbers of the form a+ bi,
where a, b ∈ Q.) The ring of integers for K is called the Gaussian
integers, Z[i].

Here [K : Q] = 2 so |Gal(K/Q)| = 2 and consequently
K/Q is abelian. So Frob(p) is unique for each prime p. By studying
the residue fields of the extension, ` = Z[i]/pZ[i] = Fp2 and
k = Z/pZ = Fp, we can prove that

Frob(p) =

{
τ if p ≡ 3 (mod 4)

1 if p ≡ 1 (mod 4),

where τ ∈ Gal(K/Q) is complex conjugation.
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Consequences

Example

This is part of a more extensive classification of primes in the
extension Q(i)/Q. For a prime p ∈ Z, the following are equivalent:

(a) p ≡ 1 (mod 4).
(b) (p) splits completely in Z[i].
(c) −1 is a quadratic residue mod p.
(d) Frob(p) = 1 in Gal(Q(i)/Q).
(e) (Fermat) p = x2 + y2 for some integers x and y.

In fact, (c) is part of Gauss’s theory of quadratic reciprocity. The
Frobenius element is a direct generalization of the Legendre symbol(
·
p

)
and consequently we sometimes write Frob(p) =

(
K/Q
p

)
.
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Consequences

We can prove Dirichlet’s Theorem using Čebotarev’s density
theorem.

Proof.

Consider f(x) = xm − 1 again.
A splitting field for f is K = Q(ζm) where ζm = e2πi/m, a primitive
mth root of unity.
There is a canonical isomorphism Gal(K/Q) ∼= (Z/mZ)×.
Notice: |Gal(K/Q)| = φ(m).
Under the isomorphism, (ζm 7→ ζam)←→ a (mod m).
For a prime p, Frob(p) = (ζm 7→ ζpm).
By Čebotarev, the set of primes p for which Frob(p) = σ is infinite
for each σ ∈ Gal(K/Q).
Therefore there are infinitely many primes p ≡ a (mod m).
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theorem.

Proof.

Consider f(x) = xm − 1 again.
A splitting field for f is K = Q(ζm) where ζm = e2πi/m, a primitive
mth root of unity.

There is a canonical isomorphism Gal(K/Q) ∼= (Z/mZ)×.
Notice: |Gal(K/Q)| = φ(m).
Under the isomorphism, (ζm 7→ ζam)←→ a (mod m).
For a prime p, Frob(p) = (ζm 7→ ζpm).
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for each σ ∈ Gal(K/Q).
Therefore there are infinitely many primes p ≡ a (mod m).
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By Čebotarev, the set of primes p for which Frob(p) = σ is infinite
for each σ ∈ Gal(K/Q).
Therefore there are infinitely many primes p ≡ a (mod m).



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Consequences

We can prove Dirichlet’s Theorem using Čebotarev’s density
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Class Field Theory (in 2 slides)

Fix a number field K (a finite-dimensional field extension K ⊃ Q)

Definition
The set OK of all algebraic integers of K, i.e. elements α ∈ K that
are the root of some monic polynomial in Z[x], is called the ring of
integers of K.

Proposition

The set ImK of fractional ideals in the ring of integers OK relatively
prime to a modulus m is a free abelian group on the prime ideals of
OK that are relatively prime to m.

Denote the subgroup of ImK generated by principal prime ideals by
PK(m, 1).



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Class Field Theory (in 2 slides)

Fix a number field K

(a finite-dimensional field extension K ⊃ Q)

Definition
The set OK of all algebraic integers of K, i.e. elements α ∈ K that
are the root of some monic polynomial in Z[x], is called the ring of
integers of K.

Proposition

The set ImK of fractional ideals in the ring of integers OK relatively
prime to a modulus m is a free abelian group on the prime ideals of
OK that are relatively prime to m.

Denote the subgroup of ImK generated by principal prime ideals by
PK(m, 1).



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Class Field Theory (in 2 slides)

Fix a number field K (a finite-dimensional field extension K ⊃ Q)

Definition
The set OK of all algebraic integers of K, i.e. elements α ∈ K that
are the root of some monic polynomial in Z[x], is called the ring of
integers of K.

Proposition

The set ImK of fractional ideals in the ring of integers OK relatively
prime to a modulus m is a free abelian group on the prime ideals of
OK that are relatively prime to m.

Denote the subgroup of ImK generated by principal prime ideals by
PK(m, 1).



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Class Field Theory (in 2 slides)

Fix a number field K (a finite-dimensional field extension K ⊃ Q)

Definition
The set OK of all algebraic integers of K, i.e. elements α ∈ K that
are the root of some monic polynomial in Z[x], is called the ring of
integers of K.

Proposition

The set ImK of fractional ideals in the ring of integers OK relatively
prime to a modulus m is a free abelian group on the prime ideals of
OK that are relatively prime to m.

Denote the subgroup of ImK generated by principal prime ideals by
PK(m, 1).



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Class Field Theory (in 2 slides)

Fix a number field K (a finite-dimensional field extension K ⊃ Q)

Definition
The set OK of all algebraic integers of K, i.e. elements α ∈ K that
are the root of some monic polynomial in Z[x], is called the ring of
integers of K.

Proposition

The set ImK of fractional ideals in the ring of integers OK relatively
prime to a modulus m is a free abelian group on the prime ideals of
OK that are relatively prime to m.

Denote the subgroup of ImK generated by principal prime ideals by
PK(m, 1).



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Class Field Theory (in 2 slides)

Fix a number field K (a finite-dimensional field extension K ⊃ Q)

Definition
The set OK of all algebraic integers of K, i.e. elements α ∈ K that
are the root of some monic polynomial in Z[x], is called the ring of
integers of K.

Proposition

The set ImK of fractional ideals in the ring of integers OK relatively
prime to a modulus m is a free abelian group on the prime ideals of
OK that are relatively prime to m.

Denote the subgroup of ImK generated by principal prime ideals by
PK(m, 1).



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Class Field Theory (in 2 slides)

Definition
A subgroup H ≤ ImK is a congruence subgroup for K if
PK(m, 1) ≤ H ≤ ImK . For such a subgroup H, the quotient ImK/H is
called a generalized ideal class group for K.

The goal of class field theory is to classify all abelian extensions of K
via class groups. This is accomplished by proving

Theorem (The Classification Theorem)

For a number field K, there is a one-to-one, inclusion-reversing
correspondence{

finite abelian
extensions L/K

}
←→

{
generalized ideal
class groups of K

}
.
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Take a deep breath



Introduction Dirichlet’s Theorem Polynomial Factorization The Density Theorems Class Field Theory n-Fermat Primes

Ok, I lied...

Just consider IK (free abelian group on prime ideals of OK)
PK = the subgroup of principal ideals
So PK is a congruence subgroup

Definition

The quotient IK/PK is called the class group of K, denoted C(OK).

By the Classification Theorem, there’s an abelian extension...
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The Hilbert Class Field

Definition

For a number field K, the unique abelian extension H/K with
Gal(H/K) ∼= C(OK) is called the Hilbert class field of K.

Theorem
The Hilbert class field of K is the unique maximal unramified abelian
extension of K.
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The Hilbert Class Field

So what is it good for?

Recall the motivating question:

For n ∈ N, when is x2 + ny2 prime?

Class field theory (on the HCF) gives an answer...
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The Hilbert Class Field

Theorem (Cox)

Let n a squarefree positive integer such that n 6≡ 3 (mod 4) and set
K = Q(

√
−n).

Let H be the Hilbert class field of K and suppose f(x)
is the minimal polynomial of some primitive element of H over K.
Then for an odd prime p that doesn’t divide the discriminant of f ,

p = x2+ny2 ⇐⇒
(
−n
p

)
= 1 and f(x) ≡ 0 (mod p) for some x ∈ Z.

There is also a generalization for all n, but it uses even more class
field theory (orders, ring class fields).
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n-Fermat Primes

Definition

For an integer n ≥ 1, a prime p is an n-Fermat prime if p = x2 + ny2

for some x, y ∈ Z.

Cox’s Theorem fully characterizes n-Fermat primes with congruence
conditions and polynomial solvability conditions.
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Symmetric n-Fermat Primes

A related (and much harder) question is:

If x2 + ny2 is prime, when is y2 + nx2 also prime?

Definition

An n-Fermat prime p = x2 + ny2 is a symmetric n-Fermat prime
provided q = y2 + nx2 is also prime.

Question
Are there conditions similar to Cox’s Theorem that determine when
an n-Fermat prime is symmetric?
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Symmetric n-Fermat Primes

There are infinitely many n-Fermat primes for each n ≥ 1. (Cox)

Are there infinitely many symmetric n-Fermat primes?
Easy case: n = 1 (think about it)
Even for n = 2, the answer is not known (as far as we can tell)
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Symmetric n-Fermat Primes

Example

Let n = 2.

First few symmetric 2-Fermat primes: 3, 11, 19, 43, 59, 67, 83, 107,
139, 163, 179 . . .

It appears that p is a symmetric 2-Fermat prime ⇐⇒ p ≡ 3 (mod 8).

But this breaks early for 131:

131 = 92 + 2 · 52 but 52 + 2 · 92 = 187 = 11 · 17.
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Symmetric n-Fermat Primes

Example

Let n = 2.

Empirical results:
About 14% of 2-Fermat primes are symmetric.

Using the Prime Number Theorem as an estimate, the ratio of
observed symmetric 2-Fermat primes to expected symmetric
2-Fermat primes is about 0.94.
That is, there are slightly less symmetric 2-Fermat primes than
we expect!
Something interesting is going on here...
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Symmetric n-Fermat Primes

For a positive number M , let πsym,n(M) denote the number of
primes y2 + nx2 such that x2 + ny2 is prime and x, y ≤M .

This is like the prime counting function π(x) or Dirichlet’s
generalization πa,m(x) for p ≡ a (mod m).
By the PNT, there is a nonnegative real number αn so that

πsym,n(M) ∼ 2αn
∑
q≤M

1

log q

where the sum is over numbers q = y2 + nx2 for which x, y ≤M ,
x and y are relatively prime and x2 + ny2 is prime.
For example, when n = 2, α2 ≈ 0.94.
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Conjectures and Further Research

πsym,n(M) ∼ 2αn
∑
q≤M

1

log q

Conjecture

αn > 0 for all n ≥ 1.

Holds for n ≤ 100, 000 and x, y ≤ 2, 000.

Conjecture

The average value of αn over all n ≥ 1 is equal to 1.

Some n have αn > 2 and others < 1
2 , but for n ≤ 100, 000,

0.4 ≤ αn ≤ 2.1 within the search space x, y ≤ 2, 000.

Conjecture

The set of αn is bounded.
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Conjectures and Further Research

Conjecture

There exists an extension L of K = Q(
√
−n) such that if f(x) is the

minimal polynomial of a primitive element of L over K and p is an odd
prime not dividing the discriminant of f , then p is a symmetric

n-Fermat prime if and only if
(
−n
p

)
= 1 and f(x) ≡ 0(mod p) is

solvable over Z.

Question
If p is an n-Fermat prime, is there an algorithm for finding all or even
any solutions x, y ∈ Z to p = x2 + ny2?

And if so, how many solutions are there?
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An Application (Finally!)

Let p be an odd prime. Fermat was able to prove:

p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4).

p = x2 + 2y2 ⇐⇒ p ≡ 1 or 3 (mod 8).

p = x2 + 3y2 ⇐⇒ p = 3 or p ≡ 1 (mod 3).

Euler discovered primality tests for these, e.g. m = x2 + y2 has a
single solution (x, y) in positive integers when m is prime.
There are similar tests for n = 2, 3.
These are useful for codebreaking algorithms and, more
importantly, for writing secure cryptosystems.
The complexity of n-Fermat primes and symmetric n-Fermat
primes may soon contribute to greater cryptographic security.
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Thank you!
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