Primes of the Form $x^2 + ny^2$

With an introduction to class field theory

Andrew J. Kobin

ak5ah@virginia.edu

October 2, 2015

Master's thesis work with Dr. Frank Moore at Wake Forest University

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes
Introduc	stion				

For the first half of the talk, three main ideas:

For the first half of the talk, three main ideas:Dirichlet's Theorem

For the first half of the talk, three main ideas: • Dirichlet's Theorem

- Polynomial factorizatio
- Polynomial factorization

For the first half of the talk, three main ideas:

- Dirichlet's Theorem
- Polynomial factorization
 - Galois Theory

For the first half of the talk, three main ideas:

- Dirichlet's Theorem
- Polynomial factorization
 - Galois Theory
- Density Theorems

For the second half of the talk:

For the second half of the talk: • Class field theory

For the second half of the talk: • Class field theory

• Primes of the form $x^2 + ny^2$

For the second half of the talk: • Class field theory

- Primes of the form $x^2 + ny^2$
- Symmetric *n*-Fermat primes

Question to think about:

Question to think about:

For a given $n\in\mathbb{N},$ when is x^2+ny^2 prime? And when is y^2+nx^2 also prime?

Dirichlet's Theorem

Recall:

Dirichlet's Theorem

Recall:

Theorem (Dirichlet)

For every pair of relatively prime integers a and m, there are infinitely many primes of the form km + a.

Dirichlet's Theorem

Recall:

Theorem (Dirichlet)

For every pair of relatively prime integers a and m, there are infinitely many primes of the form km + a.

In other words, the set

$$S = \{p \text{ prime} \mid p \equiv a \pmod{m}\}$$

is infinite.

The Density Theorem:

Class Field T

n-Fermat Primes

Another view of Dirichlet's Theorem

Definition

A set S of prime numbers has $\mbox{Dirichlet density } \delta$ if

Definition

A set S of prime numbers has $\mbox{Dirichlet density } \delta$ if

$$\sum_{p \in S} \frac{1}{p^s} \sim -\delta \log(s-1).$$

Definition

A set S of prime numbers has $\mbox{Dirichlet density } \delta$ if

$$\sum_{p \in S} \frac{1}{p^s} \sim -\delta \log(s-1).$$

This is equal to the natural density

$$\lim_{x \to \infty} \frac{\#\{p \in S : p \le x\}}{\#\{p \text{ prime} : p \le x\}}$$

if both exist*.

Definition

A set S of prime numbers has $\mbox{Dirichlet density } \delta$ if

$$\sum_{p \in S} \frac{1}{p^s} \sim -\delta \log(s-1).$$

This is equal to the natural density

$$\lim_{x \to \infty} \frac{\#\{p \in S : p \le x\}}{\#\{p \text{ prime} : p \le x\}}$$

if both exist*.

*If S has a natural density, then $\delta(S)$ exists. The converse is false.

Definition

A set S of prime numbers has Dirichlet density δ if

$$\sum_{p \in S} \frac{1}{p^s} \sim -\delta \log(s-1).$$

Fact: If $\delta(S) > 0$ then *S* is an infinite set.

Dirichlet's Theorem (1837)

Let a and m be positive integers so that gcd(a, m) = 1. Then the set

$$S = \{p \text{ prime} \mid p \equiv a \pmod{m}\}$$

has density $\delta(S) = \frac{1}{\phi(m)}$ and in particular S is infinite.

Dirichlet's Theorem (1837)

Let a and m be positive integers so that gcd(a, m) = 1. Then the set

$$S = \{p \text{ prime} \mid p \equiv a \pmod{m}\}$$

has density $\delta(S) = \frac{1}{\phi(m)}$ and in particular S is infinite.

• Dirichlet originally proved this using *L*-series.

Dirichlet's Theorem (1837)

Let a and m be positive integers so that gcd(a, m) = 1. Then the set

$$S = \{p \text{ prime} \mid p \equiv a \pmod{m}\}$$

has density $\delta(S) = \frac{1}{\phi(m)}$ and in particular S is infinite.

- Dirichlet originally proved this using *L*-series.
- We will use the Čebotarev density theorem.

Theorem Pc

Polynomial Factorization

The Density Theorem

neorems Clas

ield Theory

n-Fermat Primes

Polynomial Factorization

Switching gears...

Polynomial Factorization

Question

Given a polynomial f(x) with integer coefficients, how does f factor modulo different primes p?

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let
$$f(x) = x^4 - x - 1$$
.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$
 (3,1)

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$
 (3,1)

•
$$f \equiv x^4 - x - 1 \pmod{47}$$

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$
 (3,1)
• $f \equiv x^4 - x - 1 \pmod{47}$ (4)

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$
 (3,1)
• $f \equiv x^4 - x - 1 \pmod{47}$ (4)
• $f \equiv (x^2 + 34x + 24)(x^2 + 67x + 21) \pmod{101}$

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$
 (3,1)
• $f \equiv x^4 - x - 1 \pmod{47}$ (4)
• $f \equiv (x^2 + 34x + 24)(x^2 + 67x + 21) \pmod{101}$ (2,2)

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

Some decomposition patterns of $f \mod p$ for different primes:

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$
 (3,1)
• $f \equiv x^4 - x - 1 \pmod{47}$ (4)
• $f \equiv (x^2 + 34x + 24)(x^2 + 67x + 21) \pmod{101}$ (2,2)

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$ f is irreducible!

Some decomposition patterns of $f \mod p$ for different primes:

۹	$f \equiv (x^3 + 3x^2 + 2x + 5)(x+4) \pmod{7}$	(3,1)
٩	$f \equiv x^4 - x - 1 \pmod{47}$	(4)
٩	$f \equiv (x^2 + 34x + 24)(x^2 + 67x + 21) \pmod{101}$	(2,2)

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let
$$f(x) = x^4 - x - 1$$
.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	1/4

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	1/4
3,1	

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	1/4
3,1	1/3

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	1/4
3,1	1/3
2,2	

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	1/4
3,1	1/3
2,2	1/8

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	1/4
3,1	1/3
2,2	1/8
2,1,1	

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	1/4
3,1	1/3
2,2	1/8
2,1,1	1/4

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes	
4	1/4	
3,1	1/3	
2,2	1/8	
2,1,1	1/4	
1,1,1,1		

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let $f(x) = x^4 - x - 1$.

decomposition	proportion of primes
4	1/4
3,1	1/3
2,2	1/8
2,1,1	1/4
1,1,1,1	1/24

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let
$$f(x) = x^4 - x - 1$$
.

Recall:

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let
$$f(x) = x^4 - x - 1$$
.

Recall:

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$
 (3,1)
• $f \equiv x^4 - x - 1 \pmod{47}$ (4)
• $f \equiv (x^2 + 34x + 24)(x^2 + 67x + 21) \pmod{101}$ (2,2)

•
$$f \equiv (x^2 + 34x + 24)(x^2 + 67x + 21) \pmod{101}$$
 (2.2)

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

How does f factor mod p?

Example

Let
$$f(x) = x^4 - x - 1$$
.

Recall:

•
$$f \equiv (x^3 + 3x^2 + 2x + 5)(x + 4) \pmod{7}$$
 (3.1)

•
$$f \equiv x^4 - x - 1 \pmod{47}$$
 (4)

•
$$f \equiv (x^2 + 34x + 24)(x^2 + 67x + 21) \pmod{101}$$
 (2,2)

There's a group acting on the roots of $f \dots$

Switching gears again...

• Let f(x) be an irreducible polynomial with coefficients in \mathbb{Z} .

- Let f(x) be an irreducible polynomial with coefficients in \mathbb{Z} .
- Let $\{\alpha_1, \ldots, \alpha_n\}$ be the distinct complex roots of f.

- Let f(x) be an irreducible polynomial with coefficients in \mathbb{Z} .
- Let $\{\alpha_1, \ldots, \alpha_n\}$ be the distinct complex roots of f.
- There is a group Gal(f) called the *Galois group of* f that acts on f by permuting the α_i in some fashion.

- Let f(x) be an irreducible polynomial with coefficients in \mathbb{Z} .
- Let $\{\alpha_1, \ldots, \alpha_n\}$ be the distinct complex roots of f.
- There is a group Gal(f) called the *Galois group of* f that acts on f by permuting the α_i in some fashion.

This is best understood in the context of field extensions.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes
Galois	Theory				

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes
Galois	Theory				
Def	finition				
lf K	í is a field, a f i	i eld extension o	of K is a field L of	containing K .	

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes
Galois [·]	Theory				
Def	inition				

If *K* is a field, a **field extension** of *K* is a field *L* containing *K*. This is denoted L/K.

Definition

If K is a field, a **field extension** of K is a field L containing K. This is denoted L/K.

Definition

The **Galois group** Gal(L/K) is the group of automorphisms of L that fix *K*. *****

Definition

If *K* is a field, a **field extension** of *K* is a field *L* containing *K*. This is denoted L/K.

Definition

The **Galois group** Gal(L/K) is the group of automorphisms of L that fix K.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes
Galois	Theory				

Definition

Let $f(x) \in \mathbb{Z}[x]$.

Definition

Let $f(x) \in \mathbb{Z}[x]$. A **splitting field** for f is a field extension K/\mathbb{Q} such that f can be written as a product of linear factors in K[x]:

Definition

Let $f(x) \in \mathbb{Z}[x]$. A **splitting field** for f is a field extension K/\mathbb{Q} such that f can be written as a product of linear factors in K[x]:

$$f(x) = \prod (x - \beta_i), \quad \beta_i \in K.$$

Definition

Let $f(x) \in \mathbb{Z}[x]$. A **splitting field** for f is a field extension K/\mathbb{Q} such that f can be written as a product of linear factors in K[x]:

$$f(x) = \prod (x - \beta_i), \quad \beta_i \in K.$$

Definition

The Galois group of a polynomial $f(x) \in \mathbb{Z}[x]$ is $Gal(K/\mathbb{Q})$ where K is a splitting field for f.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes
Galois	Theory				

Congratulations!

Congratulations!

Back to polynomials

• Recall the question: how does f(x) factor mod p?

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

- Recall the question: how does f(x) factor mod p?
- $f(x) \equiv f_1(x)f_2(x)\cdots f_r(x) \pmod{p}$ where $f_i \in \mathbb{Z}[x]$ are distinct, irreducible.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

- Recall the question: how does f(x) factor mod p?
- $f(x) \equiv f_1(x)f_2(x)\cdots f_r(x) \pmod{p}$ where $f_i \in \mathbb{Z}[x]$ are distinct, irreducible.
- Let $d_i = \deg f_i$ for each i.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

- Recall the question: how does *f*(*x*) factor mod *p*?
- $f(x) \equiv f_1(x)f_2(x)\cdots f_r(x) \pmod{p}$ where $f_i \in \mathbb{Z}[x]$ are distinct, irreducible.
- Let $d_i = \deg f_i$ for each i.
- We say f has decomposition type $(d_1, d_2, \ldots, d_r) \mod p$.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

- Recall the question: how does *f*(*x*) factor mod *p*?
- $f(x) \equiv f_1(x)f_2(x)\cdots f_r(x) \pmod{p}$ where $f_i \in \mathbb{Z}[x]$ are distinct, irreducible.
- Let $d_i = \deg f_i$ for each i.
- We say f has decomposition type $(d_1, d_2, \ldots, d_r) \mod p$.

Introduction	Dificiliers medicin	1 olynomiai'r actorization	The Density Theorems	Class Field Theory	<i>n</i> -rematrimes
۹	Recall the que	estion: how does	f(x) factor mo	d <i>p</i> ?	

- $f(x) \equiv f_1(x)f_2(x)\cdots f_r(x) \pmod{p}$ where $f_i \in \mathbb{Z}[x]$ are distinct, irreducible.
- Let $d_i = \deg f_i$ for each i.
- We say f has decomposition type $(d_1, d_2, \ldots, d_r) \mod p$.

For a given prime p, is there a permutation $\sigma_p\in {\rm Gal}(f)$ that has the same cycle type as f's decomposition mod p?

Introduction	Dirichlet's Theorem	Folynonnial Factorization	The Density Theorems	Glass Field Theory	n-rematrime	5
۲	Recall the qu	estion: how doe	s $f(x)$ factor mo	d <i>p</i> ?		

- $f(x) \equiv f_1(x)f_2(x)\cdots f_r(x) \pmod{p}$ where $f_i \in \mathbb{Z}[x]$ are distinct, irreducible.
- Let $d_i = \deg f_i$ for each i.
- We say f has decomposition type $(d_1, d_2, \ldots, d_r) \mod p$.

For a given prime p, is there a permutation $\sigma_p\in \mathrm{Gal}(f)$ that has the same cycle type as f's decomposition mod p?

Definition

If $\sigma \in \text{Gal}(f)$ has the same cycle type as the decomposition of $f \mod p$, σ is called a **Frobenius element** of p.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

For a given prime p, can we find a permutation $\sigma \in Gal(f)$ that has the same cycle type as f's decomposition mod p?

Example (Stevenhagen, Lenstra)

Consider $f(x) = x^m - 1$ and a prime $p \nmid m$.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

For a given prime p, can we find a permutation $\sigma \in Gal(f)$ that has the same cycle type as f's decomposition mod p?

Example (Stevenhagen, Lenstra)

Consider $f(x) = x^m - 1$ and a prime $p \nmid m$. For m = 12, the primes and decomposition types look like:

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

For a given prime p, can we find a permutation $\sigma \in Gal(f)$ that has the same cycle type as f's decomposition mod p?

Example (Stevenhagen, Lenstra)

Consider $f(x) = x^m - 1$ and a prime $p \nmid m$. For m = 12, the primes and decomposition types look like:

•
$$p \equiv 5 \pmod{12} \longleftrightarrow (1,1,1,1,2,2,2,2)$$

•
$$p \equiv 7 \pmod{12} \longleftrightarrow (1,1,1,1,1,1,2,2,2)$$

•
$$p \equiv 11 \pmod{12} \longleftrightarrow (1,1,2,2,2,2,2)$$

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

For a given prime p, can we find a permutation $\sigma \in Gal(f)$ that has the same cycle type as f's decomposition mod p?

Example (Stevenhagen, Lenstra)

Consider $f(x) = x^m - 1$ and a prime $p \nmid m$. For m = 12, the primes and decomposition types look like:

•
$$p \equiv 5 \pmod{12} \longleftrightarrow (1,1,1,1,2,2,2,2)$$

•
$$p \equiv 7 \pmod{12} \longleftrightarrow (1,1,1,1,1,1,2,2,2)$$

$$p \equiv 11 \pmod{12} \longleftrightarrow (1,1,2,2,2,2,2)$$

So according to Dirichlet's Theorem, there are infinitely many primes corresponding to each cycle type.

Theorem (Frobenius)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f).

Theorem (Frobenius)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f). Suppose *S* is the set of primes *p* that have Frobenius elements Frob(p) of some given cycle type *r*.

Theorem (Frobenius)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f). Suppose *S* is the set of primes *p* that have Frobenius elements Frob(p) of some given cycle type *r*. Then the Dirichlet density of *S* is

$$\delta(S) = \frac{T}{|G|}$$

where $T = \#\{\sigma \in G : \sigma \text{ has cycle type } r\}.$

Theorem (Frobenius)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f). Suppose S is the set of primes p that have Frobenius elements Frob(p) of some given cycle type r. Then the Dirichlet density of S is

$$\delta(S) = \frac{T}{|G|}$$

where $T = \#\{\sigma \in G : \sigma \text{ has cycle type } r\}.$

So if there exists a permutation $\sigma \in G$ with a given cycle type, then f has that particular decomposition mod p for *infinitely many primes* p.

• Can this be generalized?

- Can this be generalized?
- i.e. is there a canonical choice of σ for each prime?

- Can this be generalized?
- i.e. is there a canonical choice of σ for each prime?
- Why in the world should I care?

Theorem (Čebotarev)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f).

Theorem (Čebotarev)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f). Take an element $\sigma \in G$ and denote its conjugacy class by C.

Theorem (Čebotarev)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f). Take an element $\sigma \in G$ and denote its conjugacy class by *C*. Then the set *S* of all primes *p* such that $\text{Frob}(p) \in C$ has density

$$\delta(S) = \frac{|C|}{|G|}.$$

Theorem (Čebotarev)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f). Take an element $\sigma \in G$ and denote its conjugacy class by *C*. Then the set *S* of all primes *p* such that $\text{Frob}(p) \in C$ has density

$$\delta(S) = \frac{|C|}{|G|}.$$

This is pretty much the best we could hope for.

Theorem (Čebotarev)

Let $f \in \mathbb{Z}[x]$ with Galois group G = Gal(f). Take an element $\sigma \in G$ and denote its conjugacy class by *C*. Then the set *S* of all primes *p* such that $\text{Frob}(p) \in C$ has density

$$\delta(S) = \frac{|C|}{|G|}.$$

This is pretty much the best we could hope for.

Notice that when G is abelian, this says each prime has a *unique Frobenius element* in G.

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

Corollary

Given a field extension K/\mathbb{Q} whose Galois group $Gal(K/\mathbb{Q})$ is abelian, fix an element $\sigma \in Gal(K/\mathbb{Q})$. Then the set *S* of primes *p* such that $Frob(p) = \sigma$ has density

$$\delta(S) = \frac{1}{|G|}$$

and in particular G is infinite.

Corollary

Given a field extension K/\mathbb{Q} whose Galois group $\operatorname{Gal}(K/\mathbb{Q})$ is abelian, fix an element $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$. Then the set *S* of primes *p* such that $\operatorname{Frob}(p) = \sigma$ has density

$$\delta(S) = \frac{1}{|G|}$$

and in particular G is infinite.

Corollary

For a polynomial $f(x) \in \mathbb{Z}[x]$, there are infinitely many primes p such that f splits completely into a product of linear factors mod p.

Example

Let $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

Example

Let

 $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

Oh god, why??

Example

Let $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

Oh god, why??

Well, it turns out that $Gal(f) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Example

Let $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

Oh god, why??

Well, it turns out that $Gal(f) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

You didn't answer my question...

Example

Let

 $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

Oh god, why??

Well, it turns out that $Gal(f) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

You didn't answer my question...

I'll tell you! If you want to know *how* this polynomial corresponds to the group $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, ask me later.

Example

Let $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

Example

Let

$$f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$$

- $G = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ has:
 - Nine conjugacy classes (it's abelian!)
 - Five divisions*
 - Two cycle types

Example

Let

$$f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$$

- $G = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ has:
 - Nine conjugacy classes (it's abelian!)
 - Five divisions*
 - Two cycle types

So it's useful to illustrate the difference between Frobenius' density theorem and Čebotarev's density theorem.

Example

Let $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

Example

Let $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

The distribution of primes among the cycle types:

(1)	1/9
(0,0,0)	0/0
(3,3,3)	8/9

Example

Let $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

The distribution of primes among the divisions:

D_1	1/9
D_2	2/9
D_3	2/9
D_4	2/9
D_5	2/9

Example

Let $f(x) = x^9 + 3x^8 - 18x^7 - 38x^6 + 93x^5 + 147x^4 - 161x^3 - 201x^2 + 57x + 53.$

The distribution of primes among the conjugacy classes:

id	1/9
σ_1	1/9
σ_2	1/9
σ_3	1/9
σ_4	1/9
σ_5	1/9
σ_6	1/9
σ_7	1/9
σ_8	1/9

Example

Let $K = \mathbb{Q}(i)$. (These are all complex numbers of the form a + bi, where $a, b \in \mathbb{Q}$.) The ring of integers for K is called the *Gaussian integers*, $\mathbb{Z}[i]$.

Example

Let $K = \mathbb{Q}(i)$. (These are all complex numbers of the form a + bi, where $a, b \in \mathbb{Q}$.) The ring of integers for K is called the *Gaussian integers*, $\mathbb{Z}[i]$. Here $[K : \mathbb{Q}] = 2$ so $|\operatorname{Gal}(K/\mathbb{Q})| = 2$ and consequently K/\mathbb{Q} is abelian. So $\operatorname{Frob}(p)$ is unique for each prime p.

Example

Let $K = \mathbb{Q}(i)$. (These are all complex numbers of the form a + bi, where $a, b \in \mathbb{Q}$.) The ring of integers for K is called the *Gaussian integers*, $\mathbb{Z}[i]$. Here $[K : \mathbb{Q}] = 2$ so $|\operatorname{Gal}(K/\mathbb{Q})| = 2$ and consequently K/\mathbb{Q} is abelian. So $\operatorname{Frob}(p)$ is unique for each prime p. By studying the residue fields of the extension, $\ell = \mathbb{Z}[i]/p\mathbb{Z}[i] = \mathbb{F}_{p^2}$ and $k = \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$, we can prove that

$$\operatorname{Frob}(p) = \begin{cases} \tau & \text{if } p \equiv 3 \pmod{4} \\ 1 & \text{if } p \equiv 1 \pmod{4}, \end{cases}$$

where $\tau \in \operatorname{Gal}(K/\mathbb{Q})$ is complex conjugation.

Example

This is part of a more extensive classification of primes in the extension $\mathbb{Q}(i)/\mathbb{Q}$. For a prime $p \in \mathbb{Z}$, the following are equivalent:

- (a) $p \equiv 1 \pmod{4}$.
- (b) (p) splits completely in $\mathbb{Z}[i]$.
- (c) -1 is a quadratic residue mod p.
- (d) $\operatorname{Frob}(p) = 1$ in $\operatorname{Gal}(\mathbb{Q}(i)/\mathbb{Q})$.
- (e) (Fermat) $p = x^2 + y^2$ for some integers x and y.

Example

This is part of a more extensive classification of primes in the extension $\mathbb{Q}(i)/\mathbb{Q}$. For a prime $p \in \mathbb{Z}$, the following are equivalent:

- (a) $p \equiv 1 \pmod{4}$.
- (b) (p) splits completely in $\mathbb{Z}[i]$.
- (c) -1 is a quadratic residue mod p.
- (d) $\operatorname{Frob}(p) = 1$ in $\operatorname{Gal}(\mathbb{Q}(i)/\mathbb{Q})$.
- (e) (Fermat) $p = x^2 + y^2$ for some integers x and y.

In fact, (c) is part of Gauss's theory of quadratic reciprocity. The Frobenius element is a direct generalization of the Legendre symbol $\left(\frac{\cdot}{p}\right)$ and consequently we sometimes write $\operatorname{Frob}(p) = \left(\frac{K/\mathbb{Q}}{p}\right)$.

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

Proof.

• Consider $f(x) = x^m - 1$ again.

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

- Consider $f(x) = x^m 1$ again.
- A splitting field for f is $K = \mathbb{Q}(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$, a primitive *m*th root of unity.

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

- Consider $f(x) = x^m 1$ again.
- A splitting field for f is $K = \mathbb{Q}(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$, a primitive *m*th root of unity.
- There is a canonical isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.

RSITY

Consequences

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

- Consider $f(x) = x^m 1$ again.
- A splitting field for f is $K = \mathbb{Q}(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$, a primitive *m*th root of unity.
- There is a canonical isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.
- Notice: $|\operatorname{Gal}(K/\mathbb{Q})| = \phi(m)$.

RSITY GINIA

Consequences

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

- Consider $f(x) = x^m 1$ again.
- A splitting field for f is $K = \mathbb{Q}(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$, a primitive *m*th root of unity.
- There is a canonical isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.
- Notice: $|\operatorname{Gal}(K/\mathbb{Q})| = \phi(m)$.
- Under the isomorphism, $(\zeta_m \mapsto \zeta_m^a) \longleftrightarrow a \pmod{m}$.

RSITY GINIA

Consequences

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

- Consider $f(x) = x^m 1$ again.
- A splitting field for f is $K = \mathbb{Q}(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$, a primitive *m*th root of unity.
- There is a canonical isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.
- Notice: $|\operatorname{Gal}(K/\mathbb{Q})| = \phi(m)$.
- Under the isomorphism, $(\zeta_m \mapsto \zeta_m^a) \longleftrightarrow a \pmod{m}$.
- For a prime p, $\operatorname{Frob}(p) = (\zeta_m \mapsto \zeta_m^p)$.

- RSITY

Consequences

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

- Consider $f(x) = x^m 1$ again.
- A splitting field for f is $K = \mathbb{Q}(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$, a primitive *m*th root of unity.
- There is a canonical isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.
- Notice: $|\operatorname{Gal}(K/\mathbb{Q})| = \phi(m)$.
- Under the isomorphism, $(\zeta_m \mapsto \zeta_m^a) \longleftrightarrow a \pmod{m}$.
- For a prime p, $\operatorname{Frob}(p) = (\zeta_m \mapsto \zeta_m^p)$.
- By Čebotarev, the set of primes p for which Frob(p) = σ is infinite for each σ ∈ Gal(K/Q).

RSITY GINIA

Consequences

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

- Consider $f(x) = x^m 1$ again.
- A splitting field for f is $K = \mathbb{Q}(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$, a primitive *m*th root of unity.
- There is a canonical isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.
- Notice: $|\operatorname{Gal}(K/\mathbb{Q})| = \phi(m)$.
- Under the isomorphism, $(\zeta_m \mapsto \zeta_m^a) \longleftrightarrow a \pmod{m}$.
- For a prime p, $\operatorname{Frob}(p) = (\zeta_m \mapsto \zeta_m^p)$.
- By Čebotarev, the set of primes p for which Frob(p) = σ is infinite for each σ ∈ Gal(K/Q).
- Therefore there are infinitely many primes $p \equiv a \pmod{m}$.

Q.E.D.

Consequences

We can prove Dirichlet's Theorem using Čebotarev's density theorem.

- Consider $f(x) = x^m 1$ again.
- A splitting field for f is $K = \mathbb{Q}(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$, a primitive *m*th root of unity.
- There is a canonical isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.
- Notice: $|\operatorname{Gal}(K/\mathbb{Q})| = \phi(m)$.
- Under the isomorphism, $(\zeta_m \mapsto \zeta_m^a) \longleftrightarrow a \pmod{m}$.
- For a prime p, $\operatorname{Frob}(p) = (\zeta_m \mapsto \zeta_m^p)$.
- By Čebotarev, the set of primes p for which Frob(p) = σ is infinite for each σ ∈ Gal(K/Q).
- Therefore there are infinitely many primes $p \equiv a \pmod{m}$.

Fix a number field K

Fix a number field K (a finite-dimensional field extension $K \supset \mathbb{Q}$)

Fix a number field K (a finite-dimensional field extension $K \supset \mathbb{Q}$)

Definition

The set \mathcal{O}_K of all algebraic integers of K, i.e. elements $\alpha \in K$ that are the root of some monic polynomial in $\mathbb{Z}[x]$, is called the **ring of integers** of K.

Fix a number field K (a finite-dimensional field extension $K \supset \mathbb{Q}$)

Definition

The set \mathcal{O}_K of all algebraic integers of K, i.e. elements $\alpha \in K$ that are the root of some monic polynomial in $\mathbb{Z}[x]$, is called the **ring of integers** of K.

Proposition

The set $I_K^{\mathfrak{m}}$ of fractional ideals in the ring of integers \mathcal{O}_K relatively prime to a modulus \mathfrak{m} is a free abelian group on the prime ideals of \mathcal{O}_K that are relatively prime to \mathfrak{m} .

Fix a number field K (a finite-dimensional field extension $K \supset \mathbb{Q}$)

Definition

The set \mathcal{O}_K of all algebraic integers of K, i.e. elements $\alpha \in K$ that are the root of some monic polynomial in $\mathbb{Z}[x]$, is called the **ring of integers** of K.

Proposition

The set $I_K^{\mathfrak{m}}$ of fractional ideals in the ring of integers \mathcal{O}_K relatively prime to a modulus \mathfrak{m} is a free abelian group on the prime ideals of \mathcal{O}_K that are relatively prime to \mathfrak{m} .

Denote the subgroup of $I_K^{\mathfrak{m}}$ generated by principal prime ideals by $P_K(\mathfrak{m},1)$.

Definition

A subgroup $H \leq I_K^{\mathfrak{m}}$ is a **congruence subgroup** for K if $P_K(\mathfrak{m}, 1) \leq H \leq I_K^{\mathfrak{m}}$. For such a subgroup H, the quotient $I_K^{\mathfrak{m}}/H$ is called a **generalized ideal class group** for K.

Definition

A subgroup $H \leq I_K^{\mathfrak{m}}$ is a **congruence subgroup** for *K* if $P_K(\mathfrak{m},1) \leq H \leq I_K^{\mathfrak{m}}$. For such a subgroup H, the quotient $I_K^{\mathfrak{m}}/H$ is called a **generalized ideal class group** for K.

The goal of class field theory is to classify all abelian extensions of Kvia class groups.

Definition

A subgroup $H \leq I_K^{\mathfrak{m}}$ is a **congruence subgroup** for K if $P_K(\mathfrak{m}, 1) \leq H \leq I_K^{\mathfrak{m}}$. For such a subgroup H, the quotient $I_K^{\mathfrak{m}}/H$ is called a **generalized ideal class group** for K.

The goal of class field theory is to classify all abelian extensions of K via class groups. This is accomplished by proving

Theorem (The Classification Theorem)

For a number field *K*, there is a one-to-one, inclusion-reversing correspondence

 $\left\{ \begin{array}{c} \text{finite abelian} \\ \text{extensions } L/K \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{generalized ideal} \\ \text{class groups of } K \end{array} \right\}.$

Take a deep breath

Introduction	Dirichlet's Theorem	Polynomial Factorization	The Density Theorems	Class Field Theory	n-Fermat Primes

• Just consider I_K (free abelian group on prime ideals of \mathcal{O}_K)

- Just consider I_K (free abelian group on prime ideals of \mathcal{O}_K)
- P_K = the subgroup of principal ideals

- Just consider I_K (free abelian group on prime ideals of \mathcal{O}_K)
- P_K = the subgroup of principal ideals
- So P_K is a congruence subgroup

- Just consider I_K (free abelian group on prime ideals of \mathcal{O}_K)
- P_K = the subgroup of principal ideals
- So P_K is a congruence subgroup

- Just consider I_K (free abelian group on prime ideals of \mathcal{O}_K)
- P_K = the subgroup of principal ideals
- So P_K is a congruence subgroup

Definition

The quotient I_K/P_K is called the **class group** of *K*, denoted $C(\mathcal{O}_K)$.

Ok, I lied...

- Just consider I_K (free abelian group on prime ideals of \mathcal{O}_K)
- P_K = the subgroup of principal ideals
- So P_K is a congruence subgroup

Definition

The quotient I_K/P_K is called the **class group** of *K*, denoted $C(\mathcal{O}_K)$.

By the Classification Theorem, there's an abelian extension...

Definition

For a number field K, the unique abelian extension H/K with $Gal(H/K) \cong C(\mathcal{O}_K)$ is called the **Hilbert class field** of K.

Definition

For a number field K, the unique abelian extension H/K with $Gal(H/K) \cong C(\mathcal{O}_K)$ is called the **Hilbert class field** of K.

Theorem

The Hilbert class field of K is the unique maximal unramified abelian extension of K.

The Density Theorem

Class Field Theory

n-Fermat Primes

The Hilbert Class Field

So what is it good for?

So what is it good for?

Recall the motivating question:

For
$$n \in \mathbb{N}$$
, when is $x^2 + ny^2$ prime?

So what is it good for?

Recall the motivating question:

For $n \in \mathbb{N}$, when is $x^2 + ny^2$ prime?

Class field theory (on the HCF) gives an answer...

Theorem (Cox)

Let *n* a squarefree positive integer such that $n \not\equiv 3 \pmod{4}$ and set $K = \mathbb{Q}(\sqrt{-n})$.

Theorem (Cox)

Let *n* a squarefree positive integer such that $n \not\equiv 3 \pmod{4}$ and set $K = \mathbb{Q}(\sqrt{-n})$. Let *H* be the Hilbert class field of *K* and suppose f(x) is the minimal polynomial of some primitive element of *H* over *K*.

Theorem (Cox)

Let *n* a squarefree positive integer such that $n \not\equiv 3 \pmod{4}$ and set $K = \mathbb{Q}(\sqrt{-n})$. Let *H* be the Hilbert class field of *K* and suppose f(x) is the minimal polynomial of some primitive element of *H* over *K*. Then for an odd prime *p* that doesn't divide the discriminant of *f*,

Theorem (Cox)

Let *n* a squarefree positive integer such that $n \not\equiv 3 \pmod{4}$ and set $K = \mathbb{Q}(\sqrt{-n})$. Let *H* be the Hilbert class field of *K* and suppose f(x) is the minimal polynomial of some primitive element of *H* over *K*. Then for an odd prime *p* that doesn't divide the discriminant of *f*,

$$p = x^2 + ny^2 \iff \left(\frac{-n}{p}\right) = 1$$
 and $f(x) \equiv 0 \pmod{p}$ for some $x \in \mathbb{Z}$.

Theorem (Cox)

Let *n* a squarefree positive integer such that $n \not\equiv 3 \pmod{4}$ and set $K = \mathbb{Q}(\sqrt{-n})$. Let *H* be the Hilbert class field of *K* and suppose f(x) is the minimal polynomial of some primitive element of *H* over *K*. Then for an odd prime *p* that doesn't divide the discriminant of *f*,

$$p = x^2 + ny^2 \iff \left(\frac{-n}{p}\right) = 1$$
 and $f(x) \equiv 0 \pmod{p}$ for some $x \in \mathbb{Z}$.

There is also a generalization for all n, but it uses even more class field theory (orders, ring class fields).

n-Fermat Primes

Definition

For an integer $n \ge 1$, a prime p is an n-Fermat prime if $p = x^2 + ny^2$ for some $x, y \in \mathbb{Z}$.

n-Fermat Primes

Definition

For an integer $n \ge 1$, a prime p is an n-Fermat prime if $p = x^2 + ny^2$ for some $x, y \in \mathbb{Z}$.

Cox's Theorem fully characterizes *n*-Fermat primes with congruence conditions and polynomial solvability conditions.

A related (and much harder) question is:

If $x^2 + ny^2$ is prime, when is $y^2 + nx^2$ also prime?

A related (and much harder) question is:

If $x^2 + ny^2$ is prime, when is $y^2 + nx^2$ also prime?

Definition

An *n*-Fermat prime $p = x^2 + ny^2$ is a symmetric *n*-Fermat prime provided $q = y^2 + nx^2$ is also prime.

A related (and much harder) question is:

If $x^2 + ny^2$ is prime, when is $y^2 + nx^2$ also prime?

Definition

An *n*-Fermat prime $p = x^2 + ny^2$ is a symmetric *n*-Fermat prime provided $q = y^2 + nx^2$ is also prime.

Question

Are there conditions similar to Cox's Theorem that determine when an n-Fermat prime is symmetric?

• There are infinitely many *n*-Fermat primes for each $n \ge 1$. (Cox)

- There are infinitely many *n*-Fermat primes for each $n \ge 1$. (Cox)
- Are there infinitely many symmetric *n*-Fermat primes?

- There are infinitely many *n*-Fermat primes for each $n \ge 1$. (Cox)
- Are there infinitely many symmetric *n*-Fermat primes?
- Easy case: n = 1 (think about it)

- There are infinitely many *n*-Fermat primes for each $n \ge 1$. (Cox)
- Are there infinitely many symmetric *n*-Fermat primes?
- Easy case: n = 1 (think about it)
- Even for n = 2, the answer is not known (as far as we can tell)

Example

Let n = 2.

Example

Let n = 2.

First few symmetric 2-Fermat primes: 3, 11, 19, 43, 59, 67, 83, 107, 139, 163, 179 ...

Example

Let n=2.

First few symmetric 2-Fermat primes: 3, 11, 19, 43, 59, 67, 83, 107, 139, 163, 179 . . .

It appears that p is a symmetric 2-Fermat prime $\iff p \equiv 3 \pmod{8}$.

Example

Let n = 2.

First few symmetric 2-Fermat primes: 3, 11, 19, 43, 59, 67, 83, 107, 139, 163, 179 ...

It appears that p is a symmetric 2-Fermat prime $\iff p \equiv 3 \pmod{8}$.

But this breaks early for 131:

$$131 = 9^2 + 2 \cdot 5^2$$
 but $5^2 + 2 \cdot 9^2 = 187 = 11 \cdot 17$.

Example

Let n = 2.

Empirical results:

 $\bullet\,$ About 14% of 2-Fermat primes are symmetric.

Example

Let n = 2.

Empirical results:

- About 14% of 2-Fermat primes are symmetric.
- Using the Prime Number Theorem as an estimate, the ratio of observed symmetric 2-Fermat primes to expected symmetric 2-Fermat primes is about 0.94.

Example

Let n = 2.

Empirical results:

- About 14% of 2-Fermat primes are symmetric.
- Using the Prime Number Theorem as an estimate, the ratio of observed symmetric 2-Fermat primes to expected symmetric 2-Fermat primes is about 0.94.
- That is, *there are slightly less* symmetric 2-Fermat primes than we expect!

Example

Let n=2.

Empirical results:

- About 14% of 2-Fermat primes are symmetric.
- Using the Prime Number Theorem as an estimate, the ratio of observed symmetric 2-Fermat primes to expected symmetric 2-Fermat primes is about 0.94.
- That is, there are slightly less symmetric 2-Fermat primes than we expect!
- Something interesting is going on here...

• For a positive number M, let $\pi_{sym,n}(M)$ denote the number of primes $y^2 + nx^2$ such that $x^2 + ny^2$ is prime and $x, y \leq M$.

- For a positive number M, let $\pi_{sym,n}(M)$ denote the number of primes $y^2 + nx^2$ such that $x^2 + ny^2$ is prime and $x, y \leq M$.
- This is like the prime counting function $\pi(x)$ or Dirichlet's generalization $\pi_{a,m}(x)$ for $p \equiv a \pmod{m}$.

- For a positive number M, let $\pi_{sym,n}(M)$ denote the number of primes $y^2 + nx^2$ such that $x^2 + ny^2$ is prime and $x, y \leq M$.
- This is like the prime counting function $\pi(x)$ or Dirichlet's generalization $\pi_{a,m}(x)$ for $p \equiv a \pmod{m}$.
- By the PNT, there is a nonnegative real number α_n so that

$$\pi_{sym,n}(M) \sim 2\alpha_n \sum_{q \le M} \frac{1}{\log q}$$

where the sum is over numbers $q = y^2 + nx^2$ for which $x, y \le M$, x and y are relatively prime and $x^2 + ny^2$ is prime.

- For a positive number M, let $\pi_{sym,n}(M)$ denote the number of primes $y^2 + nx^2$ such that $x^2 + ny^2$ is prime and $x, y \leq M$.
- This is like the prime counting function $\pi(x)$ or Dirichlet's generalization $\pi_{a,m}(x)$ for $p \equiv a \pmod{m}$.
- By the PNT, there is a nonnegative real number α_n so that

$$\pi_{sym,n}(M) \sim 2\alpha_n \sum_{q \le M} \frac{1}{\log q}$$

where the sum is over numbers $q = y^2 + nx^2$ for which $x, y \le M$, x and y are relatively prime and $x^2 + ny^2$ is prime.

• For example, when n = 2, $\alpha_2 \approx 0.94$.

Conjectures and Further Research

$$\pi_{sym,n}(M) \sim 2\alpha_n \sum_{q \le M} \frac{1}{\log q}$$

Conjectures and Further Research

$$\pi_{sym,n}(M) \sim 2\alpha_n \sum_{q \le M} \frac{1}{\log q}$$

Conjecture

 $\alpha_n > 0$ for all $n \ge 1$.

Conjectures and Further Research

$$\pi_{sym,n}(M) \sim 2\alpha_n \sum_{q \le M} \frac{1}{\log q}$$

Conjecture

 $\alpha_n > 0$ for all $n \ge 1$.

Holds for $n \le 100,000$ and $x, y \le 2,000$.

$$\pi_{sym,n}(M) \sim 2\alpha_n \sum_{q \le M} \frac{1}{\log q}$$

Conjecture

 $\alpha_n > 0$ for all $n \ge 1$.

Holds for $n \le 100,000$ and $x, y \le 2,000$.

Conjecture

The average value of α_n over all $n \ge 1$ is equal to 1.

$$\pi_{sym,n}(M) \sim 2\alpha_n \sum_{q \le M} \frac{1}{\log q}$$

Conjecture

 $\alpha_n > 0$ for all $n \ge 1$.

Holds for $n \le 100,000$ and $x, y \le 2,000$.

Conjecture

The average value of α_n over all $n \ge 1$ is equal to 1.

Some *n* have $\alpha_n > 2$ and others $< \frac{1}{2}$, but for $n \le 100,000$, $0.4 \le \alpha_n \le 2.1$ within the search space $x, y \le 2,000$.

$$\pi_{sym,n}(M) \sim 2\alpha_n \sum_{q \le M} \frac{1}{\log q}$$

Conjecture

 $\alpha_n > 0$ for all n > 1.

Holds for n < 100,000 and x, y < 2,000.

Conjecture

The average value of α_n over all $n \ge 1$ is equal to 1.

Some *n* have $\alpha_n > 2$ and others $< \frac{1}{2}$, but for $n \le 100,000$, $0.4 < \alpha_n < 2.1$ within the search space x, y < 2,000.

Conjecture

The set of α_n is bounded.

Conjecture

There exists an extension L of $K = \mathbb{Q}(\sqrt{-n})$ such that if f(x) is the minimal polynomial of a primitive element of L over K and p is an odd prime not dividing the discriminant of f, then p is a symmetric

n-Fermat prime if and only if
$$\left(\frac{-n}{p}\right) = 1$$
 and $f(x) \equiv 0 \pmod{p}$ is solvable over \mathbb{Z}

solvable over \mathbb{Z} .

Conjecture

There exists an extension L of $K = \mathbb{Q}(\sqrt{-n})$ such that if f(x) is the minimal polynomial of a primitive element of L over K and p is an odd prime not dividing the discriminant of f, then p is a symmetric

n-Fermat prime if and only if
$$\left(\frac{-n}{p}\right) = 1$$
 and $f(x) \equiv 0 \pmod{p}$ is solvable over \mathbb{Z}

solvable over \mathbb{Z} .

Question

If p is an n-Fermat prime, is there an algorithm for finding all or even any solutions $x, y \in \mathbb{Z}$ to $p = x^2 + ny^2$?

Conjecture

There exists an extension L of $K = \mathbb{Q}(\sqrt{-n})$ such that if f(x) is the minimal polynomial of a primitive element of L over K and p is an odd prime not dividing the discriminant of f, then p is a symmetric

n-Fermat prime if and only if
$$\left(\frac{-n}{p}\right) = 1$$
 and $f(x) \equiv 0 \pmod{p}$ is solvable over \mathbb{Z}

JIVADIE UVEI

Question

If p is an n-Fermat prime, is there an algorithm for finding all or even any solutions $x, y \in \mathbb{Z}$ to $p = x^2 + ny^2$?

And if so, how many solutions are there?

An Application (Finally!)

An Application (Finally!)

Let \boldsymbol{p} be an odd prime.

$$\begin{array}{l} p=x^2+y^2 \iff p\equiv 1 \pmod{4},\\ p=x^2+2y^2 \iff p\equiv 1 \mbox{ or } 3 \pmod{8},\\ p=x^2+3y^2 \iff p=3 \mbox{ or } p\equiv 1 \pmod{3}. \end{array}$$

$$\begin{array}{l} p=x^2+y^2 \iff p\equiv 1 \pmod{4},\\ p=x^2+2y^2 \iff p\equiv 1 \mbox{ or } 3 \pmod{8},\\ p=x^2+3y^2 \iff p=3 \mbox{ or } p\equiv 1 \pmod{3}. \end{array}$$

• Euler discovered primality tests for these, e.g. $m = x^2 + y^2$ has a single solution (x, y) in positive integers when m is prime.

$$\begin{array}{ll} p=x^2+y^2 \iff p\equiv 1 \pmod{4},\\ p=x^2+2y^2 \iff p\equiv 1 \mbox{ or } 3 \pmod{8},\\ p=x^2+3y^2 \iff p=3 \mbox{ or } p\equiv 1 \pmod{3}. \end{array}$$

- Euler discovered primality tests for these, e.g. $m = x^2 + y^2$ has a single solution (x, y) in positive integers when m is prime.
- There are similar tests for n = 2, 3.

$$\begin{array}{l} p=x^2+y^2 \iff p\equiv 1 \pmod{4},\\ p=x^2+2y^2 \iff p\equiv 1 \mbox{ or } 3 \pmod{8},\\ p=x^2+3y^2 \iff p=3 \mbox{ or } p\equiv 1 \pmod{3}. \end{array}$$

- Euler discovered primality tests for these, e.g. $m = x^2 + y^2$ has a single solution (x, y) in positive integers when m is prime.
- There are similar tests for n = 2, 3.
- These are useful for codebreaking algorithms and, more importantly, for writing secure cryptosystems.

$$\begin{array}{l} p=x^2+y^2 \iff p\equiv 1 \pmod{4},\\ p=x^2+2y^2 \iff p\equiv 1 \mbox{ or } 3 \pmod{8},\\ p=x^2+3y^2 \iff p=3 \mbox{ or } p\equiv 1 \pmod{3}. \end{array}$$

- Euler discovered primality tests for these, e.g. $m = x^2 + y^2$ has a single solution (x, y) in positive integers when m is prime.
- There are similar tests for n = 2, 3.
- These are useful for codebreaking algorithms and, more importantly, for writing secure cryptosystems.
- The complexity of *n*-Fermat primes and symmetric *n*-Fermat primes may soon contribute to greater cryptographic security.

Thank you!

Selected References

- (1) Artin, Emil and Tate, John. *Class Field Theory*. W.A. Benjamin, New York (1968).
- (2) Cox, David A. Primes of the Form $x^2 + ny^2$: Fermat, Class Field Theory, and Complex Multiplication, 2^{nd} ed. John Wiley & Sons, Hoboken (2013).
- (3) Dirichlet, Peter Gustav Lejeune. There are infinitely many prime numbers in all arithmetic progressions with first term and difference coprime. Translated from German. arXiv:0808.1408v1 [math.HO] (2008).
- (4) Janusz, Gerald J. *Algebraic Number Fields*. Academic Press, New York (1973).
- (5) Stevenhagen, P. and Lenstra, H.W., Jr. Chebotarëv and his Density Theorem. *The Mathematical Intelligencer*, vol. 18, no. 2 (1996). pp. 26-37.

Questions?

