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For the second half of the talk:
o Class field theory

o Primes of the form z? + ny?

o Symmetric n-Fermat primes

LT INIA



Introduction

Introduction

Question to think about:

-
i URRRERY



Introduction

Introduction

Question to think about:

For a given n € N, when is 22 + ny? prime? And when is y? + na?
also prime?

A
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Dirichlet’s Theorem

Recall:

Theorem (Dirichlet)

For every pair of relatively prime integers a and m, there are infinitely
many primes of the form km + a.

In other words, the set
S={pprime|p=a (modm)}

is infinite.
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Dirichlet's Theorem

Another view of Dirichlet’s Theorem

Definition

A set S of prime numbers has Dirichlet density ¢ if

1
— ~ —0log(s —1).
Do g(s —1)

pES

This is equal to the natural density

iy FPESip<a}
z—oo #{p prime : p < z}

if both exist*.

*If S has a natural density, then §(.S) exists. The converse is false.



Dirichlet's Theorem

Another view of Dirichlet’s Theorem

Definition
A set S of prime numbers has Dirichlet density J if

1
— ~ —dlog(s —1).
> g(s — 1)

pES

Fact: If 6(S) > 0 then S is an infinite set.
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Dirichlet’'s Theorem (1837)
Let a and m be positive integers so that ged(a, m) = 1. Then the set

S={pprime|p=a (mod m)}

has density §(S) = .y and in particular S is infinite.
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Dirichlet's Theorem

Another view of Dirichlet’s Theorem

Dirichlet’'s Theorem (1837)
Let a and m be positive integers so that ged(a, m) = 1. Then the set

S={pprime|p=a (mod m)}

has density §(S) = .y and in particular S is infinite.

@ Dirichlet originally proved this using L-series.
@ We will use the Cebotarev density theorem.



Polynomial Factorization

Polynomial Factorization

Switching gears...

Iy
i URRRERY



Polynomial Factorization

Polynomial Factorization

Given a polynomial f(x) with integer coefficients, how does f factor
modulo different primes p?
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Example

Let f(z) =a* — 2 — 1.

Some decomposition patterns of f mod p for different primes:
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How does f factor mod p?

Example

Let f(x) =2* —x—1. ... fisirreducible!

Some decomposition patterns of f mod p for different primes:
o f=(2*+322+ 2z +5)(x+4) (mod 7) (3,1)
o’fzx”‘—a:—l (mod 47) (4)‘

@ f= (2% + 34z + 24)(2? 4+ 67z + 21) (mod 101) (2,2)
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How does f factor mod p?

Example
Let f(z) =a2* — 2 — 1.
f factors into the partitions of n = 4 with the following frequencies:
decomposition ‘ proportion of primes
4 1/4
3,1
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Example
Let f(z) =a2* — 2 — 1.
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decomposition ‘ proportion of primes
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How does f factor mod p?

Example
Let f(z) =a2* — 2 — 1.

f factors into the partitions of n = 4 with the following frequencies:

decomposition | proportion of primes

4 1/4
3,1 1/3
2,2 1/8
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How does f factor mod p?

Example
Let f(z) =a2* — 2 — 1.

f factors into the partitions of n = 4 with the following frequencies:

decomposition | proportion of primes
4 1/4
3,1 1/3
2,2 1/8
2,11
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How does f factor mod p?

Example
Let f(z) =a2* — 2 — 1.

f factors into the partitions of n = 4 with the following frequencies:

decomposition | proportion of primes
4 1/4
3,1 1/3
2,2 1/8
2,1,1 1/4
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How does f factor mod p?

Example
Let f(z) =a2* — 2 — 1.

f factors into the partitions of n = 4 with the following frequencies:

decomposition | proportion of primes
4 1/4
3,1 1/3
2,2 1/8
2,1,1 1/4
1,1,1,1
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How does f factor mod p?

Example
Let f(z) =a2* — 2 — 1.

f factors into the partitions of n = 4 with the following frequencies:

decomposition | proportion of primes
4 1/4
3,1 1/3
2,2 1/8
2,1,1 1/4
1,1,1,1 1/24
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How does f factor mod p?

Example
Let f(z) =2t —x — 1.

Recall:
o f=(2>+322+ 22 +5)(x+4) (mod 7) (3,1)
@ f=a2*—2—1 (mod 47) (4)

0 f= (2?4 34z + 24)(2? + 67z + 21) (mod 101) (2,2)
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How does f factor mod p?

Example
Let f(z) =2t —x — 1.

Recall:
o f=(2>+322+ 22 +5)(x+4) (mod 7) (3,1)
@ f=a2*—2—1 (mod 47) (4)

0 f= (2?4 34z + 24)(2? + 67z + 21) (mod 101) (2,2)

There’s a group acting on the roots of f ...
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Galois Theory

@ Let f(x) be an irreducible polynomial with coefficients in Z.
@ Let {ay,...,a,} be the distinct complex roots of f.

@ There is a group Gal(f) called the Galois group of f that acts on
f by permuting the «; in some fashion.

This is best understood in the context of field extensions.




Polynomial Factorization

Galois Theory

Iy
i URRRERY



Polynomial Factorization

Galois Theory

Definition
If K is afield, a field extension of K is a field L containing K.
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Definition
Let f(x) € Z[z]. A splitting field for f is a field extension K/Q such
that f can be written as a product of linear factors in K[z]:

f@ =T[@-8), Biek.




Polynomial Factorization

Galois Theory

Let f(x) € Z[z]. A splitting field for f is a field extension K/Q such
that f can be written as a product of linear factors in K[z]:

f@)=[z-8), Biek.

Definition
The Galois group of a polynomial f(z) € Z[z] is Gal(K/Q) where
K is a splitting field for f.

A
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Galois Theory

Congratulations!
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Polynomial Factorization

@ Recall the question: how does f(z) factor mod p?

@ f(z) = fi(z)fa(z) - fr(x) (mod p) where f; € Z[z] are distinct,
irreducible.

@ Let d; = deg f; for each i.
@ We say f has decomposition type (d;,ds, ..., d,) mod p.

Question

For a given prime p, is there a permutation o, € Gal(f) that has the
same cycle type as f’s decomposition mod p?

Definition

| A

If o € Gal(f) has the same cycle type as the decomposition of f mod
p, o is called a Frobenius element of p.
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For a given prime p, can we find a permutation o € Gal(f) that has
the same cycle type as f’s decomposition mod p?

Example (Stevenhagen, Lenstra)

Consider f(x) = 2™ — 1 and a prime p { m. For m = 12, the primes
and decomposition types look like:

e p=1 (mod 12) +— (1,1,1,1,1,1,1,1,1,1,1,1)
@ p=5 (mod 12) «— (1,1,1,1,2,2,2,2)

@ p=7 (mod 12) +— (1,1,1,1,1,1,2,2,2)

o p=11 (mod 12) +— (1,1,2,2,2,2,2)




Polynomial Factorization

For a given prime p, can we find a permutation o € Gal(f) that has
the same cycle type as f’s decomposition mod p?

Example (Stevenhagen, Lenstra)

Consider f(x) = 2™ — 1 and a prime p { m. For m = 12, the primes
and decomposition types look like:

e p=1 (mod 12) +— (1,1,1,1,1,1,1,1,1,1,1,1)
@ p=5 (mod 12) «— (1,1,1,1,2,2,2,2)

@ p=7 (mod 12) +— (1,1,1,1,1,1,2,2,2)

o p=11 (mod 12) +— (1,1,2,2,2,2,2)

So according to Dirichlet's Theorem, there are infinitely many primes
corresponding to each cycle type.

v
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Theorem (Frobenius)
Let f € Z[x] with Galois group G = Gal(f).
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type r.
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Frobenius’ Density Theorem

Theorem (Frobenius)

Let f € Z[z] with Galois group G = Gal(f). Suppose S is the set of
primes p that have Frobenius elements Frob(p) of some given cycle
type r. Then the Dirichlet density of S is

T

55) = 1

where T = #{o € G : o has cycle type r}.
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Frobenius’ Density Theorem

Theorem (Frobenius)

Let f € Z[z] with Galois group G = Gal(f). Suppose S is the set of
primes p that have Frobenius elements Frob(p) of some given cycle
type r. Then the Dirichlet density of S is

T

55) = 1

where T = #{o € G : o has cycle type r}.

So if there exists a permutation o € G with a given cycle type, then f
has that particular decomposition mod p for infinitely many primes p.
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The Density Theorems

Questions you should be asking:
@ Can this be generalized?
@ i.e. is there a canonical choice of o for each prime?
@ Why in the world should | care?
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Cebotarev’s Density Theorem

Theorem (Cebotarev)

Let f € Z[z] with Galois group G = Gal(f). Take an elemento € G
and denote its conjugacy class by C. Then the set S of all primes p
such that Frob(p) € C' has density

5(S) = Ig:

This is pretty much the best we could hope for.

Notice that when G is abelian, this says each prime has a unique
Frobenius elementin G.
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The Density Theorems

Consequences

Corollary

Given a field extension K/Q whose Galois group Gal(K/Q) is
abelian, fix an element o € Gal(K/Q). Then the set S of primes p
such that Frob(p) = o has density

and in particular G is infinite.
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The Density Theorems

Consequences

Corollary

Given a field extension K/Q whose Galois group Gal(K/Q) is
abelian, fix an element o € Gal(K/Q). Then the set S of primes p
such that Frob(p) = o has density

and in particular G is infinite.

Corollary

For a polynomial f(x) € Z[z], there are infinitely many primes p such
that f splits completely into a product of linear factors mod p.
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Consequences

Let
f(x) = 29 +32% — 1827 — 3826 +932° + 14724 — 1612% — 20122 + 572+ 53.
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Oh god, why??
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Let
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The Density Theorems

Consequences

Example

Let
f(x) = 29 +32% — 1827 — 3826 +932° + 14724 — 1612% — 20122 + 572+ 53.

Oh god, why??
Well, it turns out that Gal(f) = Z/3Z x Z/37Z
You didn’t answer my question...

I'll tell you! If you want to know how this polynomial corresponds to
the group Z/3Z x 7Z/3Z, ask me later.
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Consequences

Let
f(x) = 29 +32% — 1827 — 3826 +932° + 14724 — 16123 — 20122 + 572+ 53.
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Consequences

Example

Let
f(x) = 29 +32% — 1827 — 3826 +932° + 14724 — 16123 — 20122 + 572+ 53.
G =1Z/3Z x Z/3Z has:

@ Nine conjugacy classes (it's abelian!)

@ Five divisions*

@ Two cycle types
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Consequences

Example

Let
f(x) = 29 +32% — 1827 — 3826 +932° + 14724 — 16123 — 20122 + 572+ 53.
G =1Z/3Z x Z/3Z has:

@ Nine conjugacy classes (it's abelian!)

@ Five divisions*

@ Two cycle types

So it's useful to illustrate the difference between Frobenius’ density
theorem and Cebotarev’s density theorem.
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Consequences

Let
f(z) = 2% +328 — 182" — 382° 4+ 932° + 1472* — 1612® — 20122 + 572+ 53.
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Consequences

Example

Let
f(z) = 2% +328 — 182" — 382° 4+ 932° + 1472* — 1612® — 20122 + 572+ 53.

The distribution of primes among the cycle types:

BENE
(3,3,3) | 8/9
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Consequences

Example

Let
f(x) = 29 +32% — 1827 — 3826 + 9325 4+ 1472 — 1612 — 20122 + 572+ 53.

The distribution of primes among the divisions:

Dy |19
D, | 2/9
Ds | 2/9
Dy | 2/9
Ds | 2/9
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Consequences

Example
Let
f(z) = 2% +328 — 182" — 382° 4+ 932° + 1472* — 1612® — 20122 + 572+ 53.
The distribution of primes among the conjugacy classes:

id | 1/9

o1 | 1/9

o9 | 1/9

oz | 1/9

o4 | 1/9

o5 | 1/9

oe | 1/9

o7 | 1/9

og | 1/9
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Consequences

Example

Let K = Q(i). (These are all complex numbers of the form a + b1,
where a,b € Q.) The ring of integers for K is called the Gaussian
integers, Zi).
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Example

Let K = Q(i). (These are all complex numbers of the form a + bi,
where a,b € Q.) The ring of integers for K is called the Gaussian
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Consequences

Example

Let K = Q(i). (These are all complex numbers of the form a + bi,
where a,b € Q.) The ring of integers for K is called the Gaussian
integers, Z[i]. Here [K : Q] = 2 so | Gal(K/Q)| = 2 and consequently
K/Q is abelian. So Frob(p) is unique for each prime p. By studying
the residue fields of the extension, ¢ = Z[i] /pZ][i] = FF,» and

k =17/pZ =T,, we can prove that

7 ifp=3 (mod 4)

Frob(p) = {1 ifp=1 (mod4),

where 7 € Gal(K/Q) is complex conjugation.
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This is part of a more extensive classification of primes in the
extension Q(¢)/Q. For a prime p € Z, the following are equivalent:

(@) p=1 (mod 4).
b) (p) splits completely in Z[i].
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—1is a quadratic residue mod p.
Frob(p) =1 in Gal(Q(4)/Q).
(Fermat) p = 22 + y? for some integers z and y.

(b)
()
(d)
(e)




The Density Theorems
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This is part of a more extensive classification of primes in the
extension Q(¢)/Q. For a prime p € Z, the following are equivalent:

(@) p=1 (mod 4).
b) (p) splits completely in Z[i].

¢
d
e

—1is a quadratic residue mod p.
Frob(p) =1 in Gal(Q(4)/Q).
(Fermat) p = 22 + y? for some integers z and y.

(b)
()
(d)
(e)

In fact, (c) is part of Gauss’s theory of quadratic reciprocity. The
Frobenius element is a direct generalization of the Legendre symbol

(;) and consequently we sometimes write Frob(p) = (KT/Q>
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Consequences

We can prove Dirichlet's Theorem using Cebotarev’s density
theorem.

@ Consider f(x) = 2™ — 1 again.

@ A splitting field for f is K = Q((,,,) where ¢,,, = €2™/™, a primitive
mth root of unity.

@ There is a canonical isomorphism Gal(K/Q) = (Z/mZ)*.
@ Notice: | Gal(K/Q)| = ¢(m).

@ Under the isomorphism, ((, — (%) <— a (mod m).

@ For a prime p, Frob(p) = ({n — C2,).

@ By Cebotarey, the set of primes p for which Frob(p) = ¢ is infinite
for each o € Gal(K/Q).

@ Therefore there are infinitely many primes p = a (mod m).
Q.E.D. | .1y
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Class Field Theory (in 2 slides)

Fix a number field K (a finite-dimensional field extension K > Q)

Definition

The set Ok of all algebraic integers of K, i.e. elements o € K that
are the root of some monic polynomial in Z[z], is called the ring of
integers of K.

Proposition

The set I} of fractional ideals in the ring of integers Oy relatively
prime to a modulus m is a free abelian group on the prime ideals of
Ok that are relatively prime to m.

Denote the subgroup of I} generated by principal prime ideals by
PK(m, 1)
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Pr(m,1) < H < I®. For such a subgroup H, the quotient I}¢/H is
called a generalized ideal class group for K.
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The goal of class field theory is to classify all abelian extensions of K
via class groups.
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Class Field Theory (in 2 slides)

Definition

A subgroup H < I} is a congruence subgroup for K if

Pr(m,1) < H < I®. For such a subgroup H, the quotient I}}/H is
called a generalized ideal class group for K.

The goal of class field theory is to classify all abelian extensions of K
via class groups. This is accomplished by proving

Theorem (The Classification Theorem)

For a number field K, there is a one-to-one, inclusion-reversing
correspondence

finite abelian generalized ideal
extensions L/ K class groups of K | °
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Class Field Theory

Ok, | lied...

@ Just consider Ik (free abelian group on prime ideals of Ok)
@ Py = the subgroup of principal ideals
@ So P is a congruence subgroup

Definition
The quotient I,/ Pk is called the class group of K, denoted C(Ok).

By the Classification Theorem, there’s an abelian extension...
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The Hilbert Class Field

Definition

For a number field K, the unique abelian extension H/K with
Gal(H/K) = C(Ok) is called the Hilbert class field of K.
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The Hilbert Class Field

Definition
For a number field K, the unique abelian extension H/K with
Gal(H/K) = C(Ok) is called the Hilbert class field of K.

The Hilbert class field of K is the unique maximal unramified abelian
extension of K.
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The Hilbert Class Field

So what is it good for?
Recall the motivating question:

For n € N, when is 22 + ny? prime?

Class field theory (on the HCF) gives an answer...
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K =Q(vV-n).
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Theorem (Cox)

Let n a squarefree positive integer such that n £ 3 (mod 4) and set
K =Q(v/—n). Let H be the Hilbert class field of K and suppose f(x)
is the minimal polynomial of some primitive element of H over K.
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K = Q(+/—n). Let H be the Hilbert class field of K and suppose f(z)
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p=2’+ny® = (pn) =1and f(z) =0 (mod p) for some x € Z.
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Class Field Theory

The Hilbert Class Field

Theorem (Cox)

Let n a squarefree positive integer such that n £ 3 (mod 4) and set
K = Q(+/—n). Let H be the Hilbert class field of K and suppose f(z)
is the minimal polynomial of some primitive element of H over K.
Then for an odd prime p that doesn'’t divide the discriminant of f,

p=2’+ny® = (pn) =1and f(z) =0 (mod p) for some x € Z.

There is also a generalization for all n, but it uses even more class
field theory (orders, ring class fields).
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For an integer n > 1, a prime p is an n-Fermat prime if p = 22 + ny?
for some z,y € Z.

A



n-Fermat Primes

n-Fermat Primes

Definition
For an integer n > 1, a prime p is an n-Fermat prime if p = 22 + ny?
for some z,y € Z.

Cox’s Theorem fully characterizes n-Fermat primes with congruence
conditions and polynomial solvability conditions.



n-Fermat Primes

Symmetric n-Fermat Primes

A



n-Fermat Primes

Symmetric n-Fermat Primes

A related (and much harder) question is:

If 22 + ny? is prime, when is y? + nz? also prime?

A



n-Fermat Primes

Symmetric n-Fermat Primes

A related (and much harder) question is:

If 22 + ny? is prime, when is y? + nz? also prime?

Definition

An n-Fermat prime p = 22 + ny? is a symmetric n-Fermat prime
provided g = 32 + nz? is also prime.

A



n-Fermat Primes

Symmetric n-Fermat Primes

A related (and much harder) question is:

If 22 + ny? is prime, when is y? + nz? also prime?

Definition

An n-Fermat prime p = 22 + ny? is a symmetric n-Fermat prime
provided g = 32 + nz? is also prime.

Question

Are there conditions similar to Cox’s Theorem that determine when
an n-Fermat prime is symmetric?
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Symmetric n-Fermat Primes

@ There are infinitely many n-Fermat primes for each n > 1. (Cox)
@ Are there infinitely many symmetric n-Fermat primes?

@ Easy case: n =1 (think about it)

@ Even for n = 2, the answer is not known (as far as we can tell)
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Symmetric n-Fermat Primes

Example
Letn = 2.

First few symmetric 2-Fermat primes: 3, 11, 19, 43, 59, 67, 83, 107,
139, 163, 179 ...

It appears that p is a symmetric 2-Fermat prime <= p =3 (mod 8).

But this breaks early for 131:

131=92+2-5%2 but 52+2-92=187=11-17.
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Symmetric n-Fermat Primes

Let n = 2.

Empirical results:

@ About 14% of 2-Fermat primes are symmetric.

@ Using the Prime Number Theorem as an estimate, the ratio of
observed symmetric 2-Fermat primes to expected symmetric
2-Fermat primes is about 0.94.

@ That is, there are slightly less symmetric 2-Fermat primes than
we expect!

@ Something interesting is going on here...
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generalization 7, ., (x) for p = a (mod m).
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primes y? + nx? such that 2% + ny? is prime and z,y < M.

@ This is like the prime counting function =(x) or Dirichlet’s
generalization 7, ., (x) for p = a (mod m).

@ By the PNT, there is a nonnegative real number «,, so that
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log q

Wsym,n(M) ~ 2ap, Z
q<M

where the sum is over numbers ¢ = y? + nz? for which z,y < M,
x and y are relatively prime and x2 + ny? is prime.
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Symmetric n-Fermat Primes

@ For a positive number M, let 75y, (M) denote the number of
primes y? + nx? such that 2% + ny? is prime and z,y < M.

@ This is like the prime counting function =(x) or Dirichlet’s
generalization 7, ., (x) for p = a (mod m).

@ By the PNT, there is a nonnegative real number «,, so that
1

log q

Wsym,n(M) ~ 2ap, Z
q<M

where the sum is over numbers ¢ = y? + nz? for which z,y < M,
x and y are relatively prime and x2 + ny? is prime.

@ For example, when n = 2, ay ~ 0.94.
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Conjectures and Further Research

ay, >0foralln > 1.

Holds for n < 100,000 and z,y < 2, 000.

The average value of «,, over alln > 1 is equal to 1.

Some n have «,, > 2 and others < % but for n < 100, 000,

0.4 < o, < 2.1 within the search space z,y < 2,000.

The set of «, is bounded.
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Conjecture

There exists an extension L of K = Q(v/—n) such that if f(x) is the
minimal polynomial of a primitive element of L over K and p is an odd
prime not dividing the discriminant of f, then p is a symmetric

n-Fermat prime if and only if <_pn> =1land f(z) = 0(mod p) is
solvable over Z.
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Conjectures and Further Research

Conjecture

There exists an extension L of K = Q(v/—n) such that if f(x) is the
minimal polynomial of a primitive element of L over K and p is an odd
prime not dividing the discriminant of f, then p is a symmetric

n-Fermat prime if and only if < ) =1and f(z) = 0(mod p) is
b
solvable over Z.

If p is an n-Fermat prime, is there an algorithm for finding all or even
any solutions z,y € Z to p = 22 + ny??

And if so, how many solutions are there?
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n-Fermat Primes

An Application (Finally!)

Let p be an odd prime. Fermat was able to prove:

p=x?+y? < p=1 (mod4).
p=x?+2y> < p=1or3 (mod8).
p=x?+3y> < p=3orp=1 (mod 3).

@ Euler discovered primality tests for these, e.g. m = 2% + 32 has a
single solution (z, y) in positive integers when m is prime.

@ There are similar tests for n = 2, 3.

@ These are useful for codebreaking algorithms and, more
importantly, for writing secure cryptosystems.

@ The complexity of n-Fermat primes and symmetric n-Fermat
primes may soon contribute to greater cryptographic security.
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