# Stacks: What Are They Good For?

Andrew J. Kobin

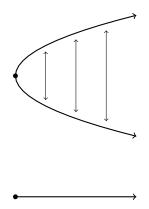
ak5ah@virginia.edu

April 17, 2020



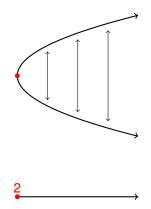
# Introduction

**Common problem:** all sorts of information is lost when we consider quotient objects and/or singular objects.



# Introduction

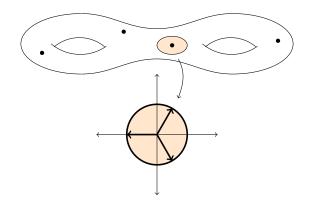
**Solution:** Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).



# **Complex Orbifolds**

# Definition

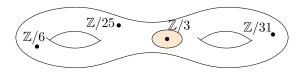
A **complex orbifold** is a topological space admitting an atlas  $\{U_i\}$  where each  $U_i \cong \mathbb{C}^n/G_i$  for a finite group  $G_i$ , satisfying compatibility conditions (think: manifold atlas but with extra info).



## Algebraic Stacks

There's also a version of orbifold in algebraic geometry: an **algebraic stack**.

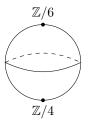
One important class of examples (Deligne–Mumford stacks) can be viewed as smooth varieties or schemes with a finite automorphism group attached at each point.



## **Running Example**

#### Example

The (compactifed) moduli space of complex elliptic curves is a stacky  $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$  with a generic  $\mathbb{Z}/2$  and a special  $\mathbb{Z}/4$  and  $\mathbb{Z}/6$ .



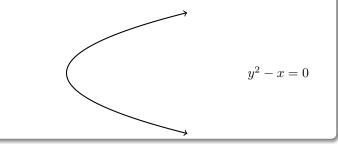
We will delve further into this example in a moment.

For now: "algebraic objects can be parametrized algebraically", but we should keep track of automorphisms (e.g. to count properly!)

Loosely, a moduli problem is of the form "classify all objects of a certain type" admitting some natural geometric structure.

#### Example

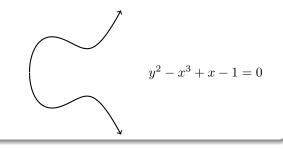
The solutions to a polynomial equation  $f(x_1, ..., x_n) = 0$  correspond to the points of an *algebraic variety*:



Loosely, a moduli problem is of the form "classify all objects of a certain type" admitting some natural geometric structure.

### Example

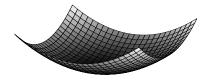
The solutions to a polynomial equation  $f(x_1, ..., x_n) = 0$  correspond to the points of an *algebraic variety*:



Loosely, a moduli problem is of the form "classify all objects of a certain type" admitting some natural geometric structure.

## Example

The solutions to a polynomial equation  $f(x_1, ..., x_n) = 0$  correspond to the points of an *algebraic variety*:



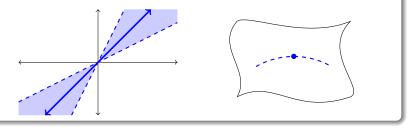
$$x^2 + y^2 - z - 1 = 0$$

Loosely, a moduli problem is of the form "classify all objects of a certain type" admitting some natural geometric structure.

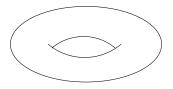
#### Example

The moduli problem of finding *r*-dimensional subspaces of an *n*-dimensional vector space *V* is *represented* by a variety Gr(r, n) called the Grassmannian variety

e.g.  $\operatorname{Gr}(1, n) = \mathbb{P}^n$ , projective *n*-space.



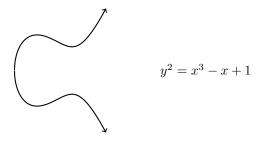
An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.



**Fact:** Every complex elliptic curve can be described by a *Weierstrass* equation  $y^2 = x^3 + Ax + B$ ,  $A, B \in \mathbb{C}$ .

An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.

**Fact:** Every complex elliptic curve can be described by a *Weierstrass* equation  $y^2 = x^3 + Ax + B$ ,  $A, B \in \mathbb{C}$ .

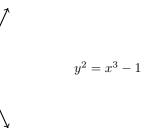


An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.

**Fact:** Every complex elliptic curve can be described by a *Weierstrass* equation  $y^2 = x^3 + Ax + B$ ,  $A, B \in \mathbb{C}$ .

An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.

**Fact:** Every complex elliptic curve can be described by a *Weierstrass* equation  $y^2 = x^3 + Ax + B$ ,  $A, B \in \mathbb{C}$ .



An **elliptic curve** is a 1-dimensional complex manifold E (a *Riemann surface*) of genus 1 together with a specified basepoint O.

**Fact:** Every complex elliptic curve can be described by a *Weierstrass* equation  $y^2 = x^3 + Ax + B$ ,  $A, B \in \mathbb{C}$ .

To classify elliptic curves, we define an invariant

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2} \in \mathbb{C}.$$

### Theorem

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

# Corollary

The affine *j*-line  $\mathbb{A}_j^1 := \mathbb{C}$  is a moduli space for isomorphism classes of elliptic curves.

A family of elliptic curves over a complex manifold *X* is a holomorphic map  $E \to X$  whose fibres are elliptic curves (and the distinguished points are picked out by a holomorphic section  $O: X \to E$ ).

Let  $\mathscr{M}_{1,1}(X)$  denote the set of isomorphism classes of (families of) elliptic curves over X. For any holomorphic map  $Y \to X$ , we get a map  $\mathscr{M}_{1,1}(X) \to \mathscr{M}_{1,1}(Y)$  defined by pullback:

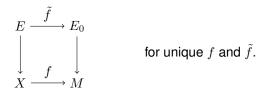


That is,  $\mathcal{M}_{1,1}$  defines a functor  $CxMfld^{op} \rightarrow Set$ .

**Question:** Is  $\mathscr{M}_{1,1}$ : CxMfld<sup>op</sup>  $\rightarrow$  Set *representable*? That is,  $\mathscr{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$  for a complex manifold M?

**Question:** Is  $\mathscr{M}_{1,1}$ : CxMfld<sup>op</sup>  $\rightarrow$  Set *representable*? That is,  $\mathscr{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$  for a complex manifold M?

**Answer:** Unfortunately, no. If there was, there would be a "universal elliptic curve"  $E_0 \in \mathcal{M}_{1,1}(M)$  corresponding to  $id_M \in \operatorname{Hom}(M, M)$  such that every elliptic curve  $E \to X$  would be a pullback



However, no map  $\tilde{f}: E \to E_0$  is unique: every elliptic curve  $E: y^2 = x^3 + Ax + B$  has a nontrivial degree 2 automorphism  $(x, y) \mapsto (x, -y)$ . Further, if j(E) = 0 or 1728,  $\operatorname{Aut}(E)$  is even larger.

**Question:** Is  $\mathscr{M}_{1,1}$ : CxMfld<sup>op</sup>  $\rightarrow$  Set *representable*? That is,  $\mathscr{M}_{1,1}(-) \cong \operatorname{Hom}(-, M)$  for a complex manifold M?

**Partial Answer:** The *j*-line  $\mathbb{A}_{j}^{1}$  is a *coarse moduli space* for the moduli problem of elliptic curves. That is:

- there is a bijection  $\mathscr{M}_{1,1}(*) \cong \operatorname{Hom}(*, \mathbb{A}^1_j) = \mathbb{C}$ ; and
- for any other complex manifold M and natural transformation  $\mathcal{M}_{1,1}(-) \to \operatorname{Hom}(-, M)$ , there is a unique map  $\mathbb{A}^1_j \to M$  making the following diagram commute:

# Example from Topology

Here's a related example from topology.

# Example

Let G be a group and consider the principal G-bundle functor

 $\operatorname{Top} \longrightarrow \operatorname{Set}, \quad X \longmapsto \operatorname{Bun}_G(X) = {\operatorname{principal} G-\operatorname{bundles}}/\operatorname{iso.}$ 

There is a space BG which classifies G-bundles up to isomorphism:



# Example from Topology

Here's a related example from topology.

# Example

Let  ${\it G}$  be a group and consider the principal  ${\it G}\mbox{-bundle}$  functor

 $\texttt{Top} \longrightarrow \texttt{Set}, \quad X \longmapsto \text{Bun}_G(X) = \{\texttt{principal } G\text{-bundles}\}/\texttt{iso}.$ 

There is a space BG which classifies G-bundles up to isomorphism:



Here,  $(f, \tilde{f})$  are unique up to homotopy, i.e. there is a natural isomorphism  $\operatorname{Bun}_G(-) \cong [-, BG]$ . Want: unique on the nose.

# **Example from Topology**

Here's a related example from topology.

#### Example

To fix this, treat *BG* as a *groupoid* 

$${\underbrace{\bullet}} g \in G$$

 $\operatorname{Bun}_G(X)$  can also be a viewed as a groupoid (remember the isomorphisms  $P \xrightarrow{\sim} P'$  between *G*-bundles over *X*).

Want a natural isomorphism

$$\operatorname{Bun}_G(-) \cong \operatorname{Hom}_{\operatorname{Gpd}}(-, BG)$$

# A Journey from Schemes to Stacks

The spaces I want to consider can be "described by algebra".

**Motivation:** Hilbert's Nullstellensatz says that the points of  $\mathbb{C}^n$  are in bijection with certain ideals in a polynomial ring:

$$\mathbb{A}^n_{\mathbb{C}} := \mathbb{C}^n \longleftrightarrow \operatorname{MaxSpec} \mathbb{C}[z_1, \dots, z_n]$$
$$P = (\alpha_1, \dots, \alpha_n) \longmapsto \mathfrak{m}_P = (z_1 - \alpha_1, \dots, z_n - \alpha_n).$$

This is the jumping off point for algebraic geometry: for a general commutative ring A, there is a space  $\operatorname{Spec} A$  defined by replacing "maximal ideals" with "prime ideals":

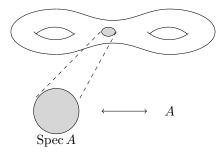
- Points of  $\operatorname{Spec} A = \operatorname{prime} \operatorname{ideals} \mathfrak{p} \subset A$
- Closed subsets of  $\operatorname{Spec} A =$  "vanishing sets"  $V(I) = \{ \mathfrak{p} \mid I \subseteq \mathfrak{p} \}$
- Sheaf of rings O on Spec A with O(Spec A) ≅ A and stalks ↔ localizations.

Stacks

# A Journey from Schemes to Stacks

Just as manifolds can be glued together from locally trivial patches, schemes are what we get by gluing together spaces built out of rings.

- An *affine scheme* is the space Spec *A* associated to a commutative ring *A*, together with its structure sheaf *O*.
- A *scheme* is a locally ringed space which is locally affine, or can be obtained by "gluing" affine schemes (and their structure sheaves) in a compatible way.



# Interlude: "Topology" is Flexible

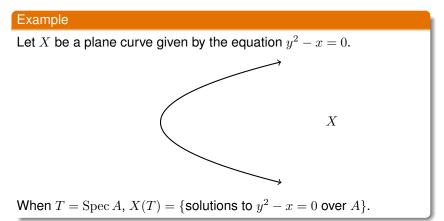
Important: the gluing must play nicely with the chosen *topology* on  $\operatorname{Spec} A$ .

e.g. in ordinary topology, a cover  $\{U_i \to X\}$  is a collection of open subsets  $U_i \subseteq X$  with  $\bigcup U_i = X$ .

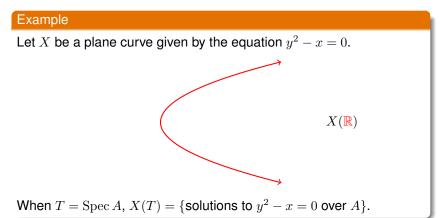
e.g. in the étale topology, a cover  $\{U_i \to X\}$  is a collection of *étale* morphisms  $f_i : U_i \to X$  with  $\bigcup f_i(U_i) = X$ .

 $(f: U \to X \text{ is } \acute{etale}$  if it induces an isomorphism on tangent spaces. That is, étale is the algebraic analogue of local homeomorphism in topology.)

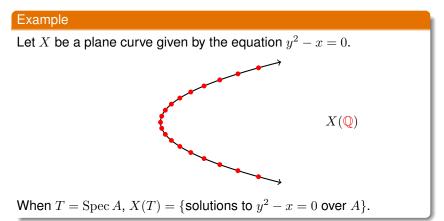
To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps  $T \to X$  from all other objects T.



To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps  $T \to X$  from all other objects T.



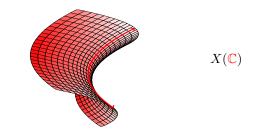
To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps  $T \to X$  from all other objects T.



To understand an object X (variety, scheme, etc.), it is enough to understand the set X(T) of all maps  $T \to X$  from all other objects T.

#### Example

Let X be a plane curve given by the equation  $y^2 - x = 0$ .



When  $T = \operatorname{Spec} A$ ,  $X(T) = \{$ solutions to  $y^2 - x = 0 \text{ over } A \}.$ 

In other words, X determines a functor  $X : \texttt{AffSch}^{op} \to \texttt{Set}$ .

So every scheme X is like a moduli problem (super interesting in general: what do its points classify?)

Like we did with moduli problems, what happens if we instead have a functor  $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$  with values in the category of *groupoids*.

#### Definition

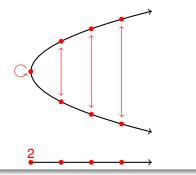
A stack is a functor  $\mathcal{X} : \operatorname{AffSch}^{op} \to \operatorname{Gpd} \operatorname{satisfying} \operatorname{descent}$ : for any étale cover\*  $\{U_i \to T\}$ , the objects/morphisms of  $\mathcal{X}(T)$  correspond to compatible objects/morphisms of  $\{\mathcal{X}(U_i)\}$ .

# Definition

A stack is a functor  $\mathcal{X} : \texttt{AffSch}^{op} \to \texttt{Gpd}$  satisfying *descent*.

#### Example

For our plane curve  $X:y^2-x=0,$  groupoids remember automorphisms like  $(x,y)\leftrightarrow (x,-y)$ 



| Intr | ~ | 4 | ot | io | n |
|------|---|---|----|----|---|
|      |   |   |    |    |   |

# Example

Let Y be a scheme and G be a group acting on Y. This determines a quotient stack [Y/G]: AffSch<sup>op</sup>  $\rightarrow$  Gpd defined by

$$[Y/G](T) = \left\{ \begin{array}{c} P \xrightarrow{f} Y \\ p \\ p \\ T \end{array} \right\}$$

where  $p: P \to T$  is a principal *G*-bundle and  $f: P \to Y$  is *G*-equivariant.

| Intr | ~ | 4 | ot | io | n |
|------|---|---|----|----|---|
|      |   |   |    |    |   |

## Example

Let Y be a scheme and G be a group acting on Y. This determines a quotient stack [Y/G]: AffSch<sup>op</sup>  $\rightarrow$  Gpd defined by

$$Y/G](T) = \left\{ \begin{array}{c} P \xrightarrow{f} Y \\ p \\ p \\ T \end{array} \right\}$$

where  $p: P \to T$  is a principal *G*-bundle and  $f: P \to Y$  is *G*-equivariant.

Exercise: Why is this the right notion of quotient?

# Example

The classifying stack of a group G is the stack  $BG:\mathtt{AffSch}^{op}\to\mathtt{Gpd}$  defined by

BG(T) = the groupoid of principal *G*-bundles  $P \rightarrow T$ .

#### Example

The classifying stack of a group G is the stack  $BG:\mathtt{AffSch}^{op}\to\mathtt{Gpd}$  defined by

BG(T) = the groupoid of principal *G*-bundles  $P \rightarrow T$ .

Alternatively,  $BG = [\bullet/G]$  and the universal *G*-bundle from topology is replaced by:



#### Representability

**Important Fact:** For every scheme *X*, its functor of points X(-): AffSch<sup>op</sup>  $\rightarrow$  Gpd is a stack. (Can you see why?) Write X(T) = Hom(T, X) for emphasis.

#### Definition

A stack  $\mathcal{X}$  is **representable** if there is a natural isomorphism  $\mathcal{X} \cong \text{Hom}(-, X)$  for a scheme X.

So a moduli problem  $\mathscr{M}$  is *representable* when  $\mathscr{M} \cong \operatorname{Hom}(-, M)$  for a scheme M, called a *fine moduli space*.

Otherwise, we can still ask for  $\mathcal{M}$  to be (represented by) a stack.

#### Example

For a group G,  $\operatorname{Bun}_G(-)$ : AffSch<sup>op</sup>  $\to$  Gpd is represented by a stack:  $\operatorname{Bun}_G(-) \cong \operatorname{Hom}(-, BG).$ 

## **Elliptic Curves Revisited**

Let  $\mathscr{M}_{1,1}: \texttt{AffSch}^{op} \to \texttt{Gpd}$  be the moduli problem of elliptic curves,

 $\mathcal{M}_{1,1}(T) =$ groupoid of maps of schemes  $C \to T$ , fibres = ell. curves.

We saw that  $\mathcal{M}_{1,1}$  is not represented by a scheme (well, a cx mfld but the same proof works). However:

### Theorem

 $\mathscr{M}_{1,1}: \texttt{AffSch}^{op} 
ightarrow \texttt{Gpd}$  is a stack.

Next: let's explore the geometry of the stack  $\mathcal{M}_{1,1}$ .

# The Point(s) of Stacks

In set theory, a point is rigid: it's just a one-element set  $\{x\}$ .

In topology, a point could be: a set-theoretic point OR a contractible space (a pt. up to homotopy).

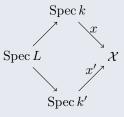
In algebraic geometry, points come in many different flavors:

- For any field k, the underlying space of Spec k is a point. Field extensions L/k ←→ nontrivial maps of points Spec L → Spec k.
- (Nilpotents are invisible) The underlying space of  $\operatorname{Spec} k[x]/(x^2)$  is also a point, but  $k[x]/(x^2) \not\cong k$  so the respective schemes are distinct.
- (Points can be dense) If A is an integral domain with fraction field K, the image of the corresponding map  $\operatorname{Spec} K \hookrightarrow \operatorname{Spec} A$  is called the *generic point* of  $\operatorname{Spec} A$ . It is dense in the topology on  $\operatorname{Spec} A$ .

# The Point(s) of Stacks

## Definition

A **point** of a scheme *X* is an equivalence class of morphisms  $x : \operatorname{Spec} k \to X$ , where *k* is a field, and where two points  $x : \operatorname{Spec} k \to X$  and  $x' : \operatorname{Spec} k' \to X$  are equivalent if there exists a field  $L \supseteq k, k'$  making the following commute:



# The Point(s) of Stacks

Replacing the scheme X with a stack  $\mathcal{X}$  yields the same definition.

#### Definition

The **automorphism group** of a point  $x : \operatorname{Spec} k \to \mathcal{X}$  of a stack  $\mathcal{X}$  is the pullback  $G_x$  in the diagram

A stacky point of  $\mathcal{X}$  is a point with  $G_x \neq 1$ .

# The Moduli Stack M<sub>1,1</sub>

#### Proposition

Let *E* be an elliptic curve over  $\mathbb{C}$ . Then Aut(E) is a finite cyclic group, and more specifically,

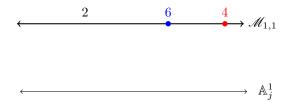
$$\operatorname{Aut}(E) = \begin{cases} \mathbb{Z}/6\mathbb{Z}, & \text{if } j(E) = 0\\ \mathbb{Z}/4\mathbb{Z}, & \text{if } j(E) = 1728 = 12^3\\ \mathbb{Z}/2\mathbb{Z}, & \text{if } j(E) \neq 0, 1728. \end{cases}$$

#### Theorem

Let  $\mathcal{M}_{1,1}$  be the moduli stack of elliptic curves. Then  $\mathcal{M}_{1,1}$  is a "stacky"  $\mathbb{A}^1$  with automorphism group  $\mathbb{Z}/2\mathbb{Z}$  at every point except two, which have automorphism groups  $\mathbb{Z}/4\mathbb{Z}$  and  $\mathbb{Z}/6\mathbb{Z}$ . Further, there is a map  $\mathcal{M}_{1,1} \to \mathbb{A}^1_j$  which is a bijection on geometric points and is universal with respect to maps  $\mathcal{M}_{1,1} \to M$  where M is a scheme.

# The Moduli Stack $\mathcal{M}_{1,1}$





# The Moduli Stack M<sub>1,1</sub>

Utility of  $\mathcal{M}_{1,1}$  over  $\mathbb{A}_j^1$ :

- Stores info about automorphisms that may even be invisible over subfields of C, e.g. Q.
- Classical objects (e.g. modular forms) have geometric interpretation over a nice compactification  $\overline{\mathscr{M}_{1,1}}$  (e.g. as sections of line bundles), vs. ad hoc and awkward interpretation over  $\mathbb{P}_j^1 = \overline{\mathbb{A}_j^1}$ .
- Counting formulas with fractional coefficients "come from geometry".
- Accommodates extra structure like level structure (elliptic curves with torsion), polarizations, etc.
- "Lifts to topology" as a spectral (Deligne–Mumford) stack, leading to topological modular forms.

## **Higher Genus Curves**

All of this generalizes to curves of genus  $g \ge 2$ :

- Let  $\mathcal{M}_g$  be the moduli functor sending  $T \mapsto$  the groupoid of relative curves  $C \to T$  with genus g fibres.
- Then  $\mathcal{M}_q$  is a stack that is not representable by a scheme.
- But it has a coarse moduli space  $M_g$  which has been well-studied.
- dim  $\mathcal{M}_g = \dim M_g = 3g 3$  (compare to hyperbolic geometry).
- Marked version has deep ties to number theory, e.g.  $\chi(\mathscr{M}_{g,1}) = \zeta(1-2g)$ .

# Thank you!

https://www.desmos.com/calculator/ialhd71we3