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Introduction

Introduction

Common problem: all sorts of information is lost when we consider
quotient objects and/or singular objects.
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Solution: Keep track of lost information using orbifolds (topological
and intuitive) or stacks (algebraic and fancy).
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Complex Orbifolds

Definition

A complex orbifold is a topological space admitting an atlas {U;}
where each U; = C"/G; for a finite group G;, satisfying compatibility
conditions (think: manifold atlas but with extra info).
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples (Deligne—Mumford stacks) can be
viewed as smooth varieties or schemes with a finite automorphism
group attached at each point.
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Running Example

Example

The (compactifed) moduli space of complex elliptic curves is a stacky
P! = C U {co} with a generic Z/2 and a special Z/4 and Z/6.

7./6

>

Z)4

We will delve further into this example in a moment.

For now: “algebraic objects can be parametrized algebraically”, but
we should keep track of automorphisms (e.g. to count properly!)
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Moduli Problems

Loosely, a moduli problem is of the form “classify all objects of a
certain type” admitting some natural geometric structure.

Example

The solutions to a polynomial equation f(z1,...,z,) = 0 correspond
to the points of an algebraic variety:
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Moduli Problems

Loosely, a moduli problem is of the form “classify all objects of a
certain type” admitting some natural geometric structure.

Example

The solutions to a polynomial equation f(z1,...,z,) = 0 correspond
to the points of an algebraic variety:

Y —234+2-1=0
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Moduli Problems

Loosely, a moduli problem is of the form “classify all objects of a
certain type” admitting some natural geometric structure.

The solutions to a polynomial equation f(z1,...,x,) = 0 correspond
to the points of an algebraic variety:
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Moduli Problems

Loosely, a moduli problem is of the form “classify all objects of a
certain type” admitting some natural geometric structure.

Example

The moduli problem of finding r-dimensional subspaces of an
n-dimensional vector space V is represented by a variety Gr(r, n)
called the Grassmannian variety

e.g. Gr(1,n) = P", projective n-space.
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold £ (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy? =23+ Axr+ B, A,BecC.
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold £ (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy® = x> + Az + B, A,BcC.

=22 —z+1
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold E (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy? = x> + Ax + B, A,BcC.
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold £ (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy? = 2>+ Axr+ B, A,BecC.
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Running Example: Elliptic Curves

An elliptic curve is a 1-dimensional complex manifold £ (a Riemann
surface) of genus 1 together with a specified basepoint O.

Fact: Every complex elliptic curve can be described by a Weierstrass
equationy®? = 23> + Az + B, A,BecC.

To classify elliptic curves, we define an invariant

4A3
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C.

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

The affine j-line A} := C is a moduli space for isomorphism classes
of elliptic curves.
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Running Example: Elliptic Curves

A family of elliptic curves over a complex manifold X is a
holomorphic map E — X whose fibres are elliptic curves (and the
distinguished points are picked out by a holomorphic section
O0:X = E).

Let .#, 1(X) denote the set of isomorphism classes of (families of)
elliptic curves over X. For any holomorphic map Y — X, we get a
map .#1,1(X) — .#,1(Y) defined by pullback:

E—FE

|

Y —X

That is, .#, 1 defines a functor CxMf1d°? — Set.



Moduli Problems

Running Example: Elliptic Curves

Question: Is .7, ; : CxM£1d°? — Set representable? That is,
A1.1(—) = Hom(—, M) for a complex manifold M ?
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Running Example: Elliptic Curves

Question: Is .7, ; : CxM£1d°? — Set representable? That is,
A1.1(—) = Hom(—, M) for a complex manifold M ?

Answer: Unfortunately, no. If there was, there would be a “universal
elliptic curve” Ey € .#, 1 (M) corresponding to idy; € Hom(M, M)
such that every elliptic curve £ — X would be a pullback

E—— E
‘ J for unique f and f.
X—M

However, no map f : £ — E, is unique: every elliptic curve
E :y? = 23 + Az + B has a nontrivial degree 2 automorphism
(z,y) — (z,—y). Further, if j(E) =0 or 1728, Aut(E) is even larger.
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Running Example: Elliptic Curves

Question: Is .#; ; : CxM£1d°? — Set representable? That is,
A1.1(—) = Hom(—, M) for a complex manifold M ?

Partial Answer: The j-line A} is a coarse moduli space for the
moduli problem of elliptic curves. That is:

e there is a bijection .7 1 () = Hom(x, A}) = C; and

@ for any other complex manifold M and natural transformation

M1 (—) — Hom(—, M), there is a unique map A} — M making
the following diagram commute:

.%171 —_ H()Hl(*7 Ajl)



Moduli Problems

Example from Topology

Here’s a related example from topology.

Let G be a group and consider the principal G-bundle functor
Top — Set, X —— Bung(X) = {principal G-bundles} /iso.

There is a space BG which classifies G-bundles up to isomorphism:

PLEG

|,

X — BG
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Example from Topology

Here’s a related example from topology.

Let G be a group and consider the principal G-bundle functor
Top — Set, X —— Bung(X) = {principal G-bundles} /iso.

There is a space BG which classifies G-bundles up to isomorphism:

PLEG

|,

X — BG

Here, (f, f) are unique up to homotopy, i.e. there is a natural
isomorphism Bung(—) = [—, BG]. Want: unique on the nose.
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Example from Topology

Here’s a related example from topology.

To fix this, treat BG as a groupoid

o

Bung (X) can also be a viewed as a groupoid (remember the
isomorphisms P =+ P’ between G-bundles over X).

Want a natural isomorphism

Bung(—) = Homgpa(—, BG)
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A Journey from Schemes to Stacks

The spaces | want to consider can be “described by algebra”.

Motivation: Hilbert’s Nullstellensatz says that the points of C™ are in
bijection with certain ideals in a polynomial ring:

¢ = C" +— MaxSpecClzy, ..., 2]

P=(aq,...,an) —>mp = (21 —Q1,...,2n — Qp).

This is the jumping off point for algebraic geometry: for a general
commutative ring A, there is a space Spec A defined by replacing
“maximal ideals” with “prime ideals”:

@ Points of Spec A = prime idealsp C A
@ Closed subsets of Spec A = “vanishing sets” V/(I) = {p | I C p}

@ Sheaf of rings O on Spec A with O(Spec A) = A and stalks «
localizations.



Stacks

A Journey from Schemes to Stacks

Just as manifolds can be glued together from locally trivial patches,
schemes are what we get by gluing together spaces built out of rings.

@ An affine scheme is the space Spec A associated to a
commutative ring A, together with its structure sheaf O.

@ A scheme is a locally ringed space which is locally affine, or can

be obtained by “gluing” affine schemes (and their structure
sheaves) in a compatible way.
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Interlude: “Topology” is Flexible

Important: the gluing must play nicely with the chosen fopology on
Spec A.

e.g. in ordinary topology, a cover {U; — X} is a collection of open
subsets U; C X with | U; = X.

e.g. in the étale topology, a cover {U; — X} is a collection of étale
morphisms f; : U; — X with U f:(U;) = X.

(f: U = X is étaleif it induces an isomorphism on tangent spaces.
That is, étale is the algebraic analogue of local homeomorphism in
topology.)
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X (7') of all maps T'— X from all other objects T'.

Let X be a plane curve given by the equation 3% — z = 0.

When T = Spec 4, X (T') = {solutions to y?> — z = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
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A Journey from Schemes to Stacks: The Functor of Points

To understand an object X (variety, scheme, etc.), it is enough to
understand the set X (7') of all maps T — X from all other objects T'.

Let X be a plane curve given by the equation 3% — z = 0.

When T = Spec A, X (T') = {solutions to 4> — x = 0 over A}.
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A Journey from Schemes to Stacks: The Functor of Points

In other words, X determines a functor X : Af£fSch® — Set.

So every scheme X is like a moduli problem (super interesting in
general: what do its points classify?)

Like we did with moduli problems, what happens if we instead have a
functor X' : AffSch®? — Gpd with values in the category of groupoids.

Definition

A stack is a functor X' : Af£Sch®? — Gpd satisfying descent: for any
étale cover* {U; — T}, the objects/morphisms of X(T") correspond to
compatible objects/morphisms of {X'(U;)}.
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A Journey from Schemes to Stacks: The Functor of Points

Definition
A stack is a functor X’ : Af£fSch®” — Gpd satisfying descent.

—

Example

For our plane curve X : 32 — z = 0, groupoids remember
automorphisms like (z,y) + (z, —y)

A
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Quotients

Let Y be a scheme and G be a group acting on Y. This determines a
quotient stack [Y/G| : Af£Sch® — Gpd defined by

f

4)}/

P
v/cyr) =14 7|
T

where p: P — T'is a principal G-bundleand f : P —» Y'is
G-equivariant.
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Quotients

Let Y be a scheme and G be a group acting on Y. This determines a
quotient stack [Y/G| : Af£Sch® — Gpd defined by

f

4)}/

P
v/cyr) =14 7|
T

where p: P — T'is a principal G-bundleand f : P —» Y'is
G-equivariant.

Exercise: Why is this the right notion of quotient?
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Quotients

The classifying stack of a group G is the stack BG : Af£Sch®? — Gpd
defined by

BG(T) = the groupoid of principal G-bundles P — T.
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Quotients

Example

The classifying stack of a group G is the stack BG : Af£Sch®? — Gpd
defined by

BG(T) = the groupoid of principal G-bundles P — T.

Alternatively, BG = [¢/G] and the universal G-bundle from topology is
replaced by:

pP—

|

T — BG
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Representability

Important Fact: For every scheme X, its functor of points
X(—) : Af£Sch®? — Gpd is a stack. (Can you see why?)

Write X (T") = Hom(T, X) for emphasis.

Definition

A stack X is representable if there is a natural isomorphism
X = Hom(—, X) for a scheme X.

So a moduli problem .# is representable when .# = Hom(—, M) for
a scheme M, called a fine moduli space.

Otherwise, we can still ask for .# to be (represented by) a stack.

For a group G, Bung(—) : Af£Sch®? — Gpd is represented by a stack:
Bung(—) =2 Hom(—, BG).
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Elliptic Curves Revisited

Let .#, 1 : Af£Sch°? — Gpd be the moduli problem of elliptic curves,
1.1(T) = groupoid of maps of schemes C — T, fibres = ell. curves.

We saw that .# ; is not represented by a scheme (well, a cx mfld but
the same proof works). However:

M1 AfESch? — Gpd is a stack.

Next: let’'s explore the geometry of the stack . ;.
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The Point(s) of Stacks

In set theory, a point is rigid: it's just a one-element set {z}.

In topology, a point could be: a set-theoretic point OR a contractible
space (a pt. up to homotopy).

In algebraic geometry, points come in many different flavors:

@ For any field k, the underlying space of Spec k is a point. Field
extensions L/k «— nontrivial maps of points Spec L — Spec k.

@ (Nilpotents are invisible) The underlying space of Spec k[x]/(z?)
is also a point, but k[z]/(x?) % k so the respective schemes are
distinct.

@ (Points can be dense) If A is an integral domain with fraction field
K, the image of the corresponding map Spec K < Spec A is
called the generic point of Spec A. It is dense in the topology on
Spec A.
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The Point(s) of Stacks

Definition

A point of a scheme X is an equivalence class of morphisms

x : Speck — X, where k is a field, and where two points

2 : Speck — X and 2’ : Speck’ — X are equivalent if there exists a
field L 2 k, k' making the following commute:

Spec k
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The Point(s) of Stacks

Replacing the scheme X with a stack X’ yields the same definition.

Definition
The automorphism group of a point = : Spec k — X of a stack X is
the pullback G, in the diagram

G, —— Speck

e
PO

A stacky point of X is a point with G, # 1.
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The Moduli Stack .7, ;

Let E be an elliptic curve over C. Then Aut(FE) is a finite cyclic group,
and more specifically,

Z/6Z, ifj(E)=0
Auwt(E) = Z/4Z, ifj(E)=1728 =123
Z)2Z, ifj(E) #0,1728.

Theorem

Let .#1,1 be the moduli stack of elliptic curves. Then .4, ; is a
“stacky” A with automorphism group 7./27. at every point except two,
which have automorphism groups Z/4Z and Z/6Z. Further, there is a
map A1, — A} which is a bijection on geometric points and is
universal with respect to maps .#, 1 — M where M is a scheme.
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The Moduli Stack .7 ;

That is, .#, 1 looks like

%171
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The Moduli Stack .7 ;

Utility of . 1 over A}:

@ Stores info about automorphisms that may even be invisible over
subfields of C, e.g. Q.

@ Classical objects (e.g. modular forms) have geometric
interpretation over a nice compagctification .#; ; (e.g. as sections
of line bundles), vs. ad hoc and awkward interpretation over
P! = Al

J J°

@ Counting formulas with fractional coefficients “come from
geometry”.

@ Accommodates extra structure like level structure (elliptic curves
with torsion), polarizations, etc.

@ ‘“Lifts to topology” as a spectral (Deligne—Mumford) stack, leading
to topological modular forms.
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Higher Genus Curves

All of this generalizes to curves of genus g > 2:

@ Let .#, be the moduli functor sending T" — the groupoid of
relatlve curves C' — T with genus ¢ fibres.

@ Then .#, is a stack that is not representable by a scheme.

@ But it has a coarse moduli space M, which has been
well-studied.

@ dim.#, = dim M, = 3¢9 — 3 (compare to hyperbolic geometry).

@ Marked version has deep ties to number theory,
e.9. x(-#y1) = ((1 - 2g).
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Thank you!

https://www.desmos.com/calculator/ialhd71we3


https://www.desmos.com/calculator/ialhd71we3
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