Categorifying zeta and *L*-functions

Andrew J. Kobin

ajkobin@emory.edu

Utah Representation Theory & Number Theory Seminar

April 5, 2023

Joint work with Jon Aycock

Incidence Algebras

Objective Linear Algebra

Applications

Introduction

Believe women.

Believe your colleagues.

Stop the cruelty.

Based on

A Primer on Zeta Functions and Decomposition Spaces

Andrew Kobin

Many examples of zeta functions in number theory and combinatorics are special cases of a construction in homotopy theory known as a decomposition space. This article aims to introduce number theorists to the relevant concepts in homotopy theory and lays some foundations for future applications of decomposition spaces in the theory of zeta functions.

Comments: 23 pages: minor changes and additional references added Subjects: Number Theory (math.NT); Algebraic Geometry (math.AG); Calegory Theory (math.AT); AlgC classes: 110/6, 1118/8, 14100, 16150, 14710, 6411, 55799 Cite as: adViv-2011.139302; cmath.NT] (or adV/2011.139302; cmath.NT)

and

Categorifying quadratic zeta functions

Jon Aycock, Andrew Kobin

The Dedekind zeta function of a quadratic number field factors as a product of the Riemann zeta function and the L-function of a quadratic Dirichlet character. We categorify this formula using objective linear algebra in the abstract incidence algebra of the division poset.

 Comments:
 27 pages

 Subjects:
 Number Theory (math.NT)

 MSC classes:
 11M06, 11M41, 18N50, 06A11, 16T10

 Cite as:
 arXiv:2205.06288 [math.NT] (or arXiv:2205.062894 [math.NT] for his version)

as well as work in progress with Jon Aycock.

Incidence Algebras

Objective Linear Algebra

Applications

Introduction

Here's Jon!

Incidence Algebras

Objective Linear Algebra

Applications

Introduction

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?

motivic *L*-functions $Z_{mot}(X, t)$

arithmetic *L*-functions $\zeta_{\mathbb{Q}}(s), \zeta_K(s), \zeta_X(s)$

local *L*-functions $Z(X/\mathbb{F}_q, t)$

Introduction
000000000000000000000000000000000000000

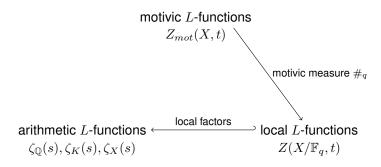
Incidence Algebras

Objective Linear Algebra

Applications

Introduction

Motivation: How are different zeta and *L*-functions related? Do they fit into a common framework?



Incidence Algebras

Objective Linear Algebra

Applications

Arithmetic Functions

A good starting place is always with the Riemann zeta function:

$$\zeta_{\mathbb{Q}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Incidence Algebras

Objective Linear Algebra

Applications

Arithmetic Functions

This is an example of a Dirichlet series:

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}.$$

We will focus on the formal properties of Dirichlet series.

The coefficients f(n) assemble into an **arithmetic function** $f : \mathbb{N} \to \mathbb{C}$. (Think: *F* is a generating function for *f*.)

Then $\zeta_{\mathbb{Q}}(s)$ is the Dirichlet series for $\zeta : n \mapsto 1$.

Introduction	Incidence Algebras	Objective Linear Alg
00000000000		

Applications

Arithmetic Functions

The space of arithmetic functions $A = \{f : \mathbb{N} \to \mathbb{C}\}$ form an algebra under convolution:

aebra

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right).$$

This identifies the algebra of formal Dirichlet series with A:

$$A \longleftrightarrow DS(\mathbb{Q})$$
$$f \longmapsto F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$
$$f * g \longmapsto F(s)G(s)$$
$$\zeta \longmapsto \zeta_{\mathbb{Q}}(s)$$

Incidence Algebras

Objective Linear Algebra

Applications

Arithmetic Functions over Number Fields

For a number field K/\mathbb{Q} , its zeta function can be written

$$\zeta_K(s) = \sum_{\mathfrak{a} \in I_K^+} \frac{1}{N(\mathfrak{a})^s} = \sum_{n=1}^\infty \frac{\#\{\mathfrak{a} \mid N(\mathfrak{a}) = n\}}{n^s}$$

where $I_K^+ = \{ \text{ideals in } \mathcal{O}_K \}$ and $N = N_{K/\mathbb{Q}}$.

Incidence Algebras

Objective Linear Algebra

Applications

Arithmetic Functions over Number Fields

As with $\zeta_{\mathbb{Q}}(s)$, we can formalize certain properties of $\zeta_K(s)$ in the algebra of arithmetic functions $A_K = \{f : I_K^+ \to \mathbb{C}\}$ with

$$(f\ast g)(\mathfrak{a})=\sum_{\mathfrak{b}\mid\mathfrak{a}}f(\mathfrak{b})g(\mathfrak{a}\mathfrak{b}^{-1}).$$

This admits an algebra map to $DS(\mathbb{Q})$:

$$N_* : A_K \longrightarrow A \cong DS(\mathbb{Q})$$
$$f \longmapsto \left(N_* f : n \mapsto \sum_{N(\mathfrak{a})=n} f(\mathfrak{a}) \right)$$
$$\zeta \longmapsto N_* \zeta \leftrightarrow \zeta_K(s)$$

Incidence Algebras

Objective Linear Algebra

Applications

Arithmetic Functions over Number Fields

As with $\zeta_{\mathbb{Q}}(s)$, we can formalize certain properties of $\zeta_K(s)$ in the algebra of arithmetic functions $A_K = \{f : I_K^+ \to \mathbb{C}\}$ with

$$(f\ast g)(\mathfrak{a})=\sum_{\mathfrak{b}\mid\mathfrak{a}}f(\mathfrak{b})g(\mathfrak{a}\mathfrak{b}^{-1}).$$

This admits an algebra map to $DS(\mathbb{Q})$:

$$N_* : A_K \longrightarrow A \cong DS(\mathbb{Q})$$
$$f \longmapsto \left(N_* f : n \mapsto \sum_{N(\mathfrak{a})=n} f(\mathfrak{a}) \right)$$
$$\zeta \longmapsto N_* \zeta \leftrightarrow \zeta_K(s)$$

Interpretation: N allows us to build Dirichlet series for arithmetic functions over K.

Incidence Algebras

Objective Linear Algebra

Applications

Varieties over Finite Fields

Let X be an algebraic variety over $\mathbb{F}_q.$ Its point-counting zeta function is the power series

$$Z(X,t) = \exp\left[\sum_{n=1}^{\infty} \frac{\#X(\mathbb{F}_{q^n})}{n} t^n\right]$$

Incidence Algebras

Objective Linear Algebra

Applications

Varieties over Finite Fields

Let *X* be an algebraic variety over \mathbb{F}_q . Its point-counting zeta function is the power series

$$Z(X,t) = \exp\left[\sum_{n=1}^{\infty} \frac{\#X(\mathbb{F}_{q^n})}{n} t^n\right]$$

Once again, we can formalize certain properties of Z(X,t) in an algebra of arithmetic functions.

Let $Z_0^{\text{eff}}(X)$ be the set of effective 0-cycles on X, i.e. formal \mathbb{N}_0 -linear combinations of closed points of X, written $\alpha = \sum m_x x$.

Let $A_X=\{f:Z_0^{\rm eff}(X)\to \mathbb{C}\}$ be the algebra of arithmetic functions with

$$(f * g)(\alpha) = \sum_{\beta \le \alpha} f(\beta)g(\alpha - \beta).$$

We call the distinguished element $\zeta : \alpha \mapsto 1$ the *zeta function* of *X*.

Incidence Algebras

Objective Linear Algebra

Applications

Varieties over Finite Fields

Let $A_X = \{f : Z_0^{\text{eff}}(X) \to \mathbb{C}\}$ be the algebra of arithmetic functions with

$$(f * g)(\alpha) = \sum_{\beta \le \alpha} f(\beta)g(\alpha - \beta).$$

This time, there's no map to $DS(\mathbb{Q})$...

Incidence Algebras

Objective Linear Algebra

Applications

Varieties over Finite Fields

Let $A_X = \{f : Z_0^{\text{eff}}(X) \to \mathbb{C}\}$ be the algebra of arithmetic functions with

$$(f * g)(\alpha) = \sum_{\beta \le \alpha} f(\beta)g(\alpha - \beta).$$

This time, there's no map to $DS(\mathbb{Q})$... but there's a map to the algebra of formal power series:

$$A_X \longrightarrow A_{\operatorname{Spec}} \mathbb{F}_q \cong \mathbb{C}[[t]]$$
$$f \leftrightarrow \sum_{n=0}^{\infty} f(n)t^n$$
$$f \longmapsto \operatorname{``deg}_*(f)"$$
$$\zeta \longmapsto \operatorname{``deg}_*(\zeta)" \leftrightarrow Z(X, t)$$

Incidence Algebras

Objective Linear Algebra

Applications

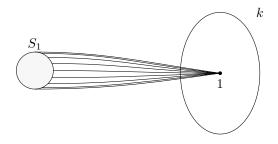
What's really going on?

Incidence Algebras

Objective Linear Algebra

What's really going on?

 A, A_K and A_X are examples of **reduced incidence algebras**, which come from a much more general simplicial framework.



Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

Idea (due to Gálvez-Carrillo, Kock and Tonks): zeta functions come from higher homotopy structure.

In this talk: zeta functions come from decomposition sets.

In general: zeta functions come from decomposition spaces.

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

Recall: a simplicial set is a functor $S: \Delta^{op} \to Set$

$$S_0 \rightleftharpoons S_1 \rightleftharpoons S_2 \cdots$$

Example

A category C determines a simplicial set NC with:

- 0-simplices = objects x in C
- 1-simplices = morphisms $x \xrightarrow{f} y$ in \mathcal{C}
- 2-simplices = decompositions $x \xrightarrow{h} y = x \xrightarrow{f} z \xrightarrow{g} y$

etc.

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

Recall: a simplicial set is a functor $S: \Delta^{op} \to Set$

$$S_0 \rightleftharpoons S_1 \rightleftharpoons S_2 \cdots$$

Example

For a number field K/\mathbb{Q} , I_K^+ is a simplicial set with:

- 0-simplices = ideals \mathfrak{a} in \mathcal{O}_K
- 1-simplices = divisibility $\mathfrak{b} \to \mathfrak{a} \iff \mathfrak{a} \mid \mathfrak{b}$
- 2-simplices = decompositions $\mathfrak{b} \to \mathfrak{c} \to \mathfrak{a}$

etc.

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

Recall: a simplicial set is a functor $S: \Delta^{op} \to Set$

$$S_0 \rightleftharpoons S_1 \rightleftharpoons S_2 \cdots$$

Example

For a variety X/\mathbb{F}_q , $Z_0^{\text{eff}}(X)$ is a simplicial set with:

- 0-simplices = effective 0-cycles α
- 1-simplices = relations $\alpha \leq \beta$
- 2-simplices = decompositions $\alpha \leq \gamma \leq \beta$

• etc.

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

A certain type of simplicial set called a **decomposition set** defined by Gálvez-Carrillo, Kock and Tonks admits a notion of incidence algebra.

Definition

The **numerical incidence algebra** of a decomposition set *S* is the vector space $I(S) = \text{Hom}(k[S_1], k)$ with multiplication

$$f(S) \otimes I(S) \longrightarrow I(S)$$

$$f \otimes g \longmapsto (f * g)(x) = \sum_{\substack{\sigma \in S_2 \\ d_1 \sigma = x}} f(d_2 \sigma) g(d_0 \sigma)$$

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

In $I(S) = \text{Hom}(k[S_1], k)$, there is a distinguished element called the **zeta function** $\zeta : x \mapsto 1$.

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

In $I(S) = \text{Hom}(k[S_1], k)$, there is a distinguished element called the **zeta function** $\zeta : x \mapsto 1$.

Key takeaways:

- (1) A zeta function is $\zeta \in I(S)$ for some decomposition set *S*.
- (2) Familiar zeta functions like ζ_K(s) and Z(X,t) are constructed from some ζ ∈ Ĩ(S) by pushing forward to another reduced incidence algebra which can be interpreted in terms of generating functions:

e.g.
$$\widetilde{I}(\mathbb{N}, |) \cong DS(\mathbb{Q}),$$
 e.g. $\widetilde{I}(\mathbb{N}_0, \leq) \cong k[[t]].$

(3) Some properties of zeta functions can be proven in the incidence algebra directly:

$$\text{e.g.} \quad \zeta_{\mathbb{Q}}(s) = \prod_{p} \frac{1}{1 - p^{-s}} \longleftrightarrow \widetilde{I}(\mathbb{N}, |) \cong \bigotimes_{p} \widetilde{I}(\{p^k\}, |).$$

Incidence Algebras

Objective Linear Algebra

Applications

Numerical Incidence Algebras

Okay, so far: $\zeta_{\mathbb{Q}}(s), \zeta_K(s), Z(X, t)$, etc. lift to the same framework.

Next: how can we get them talking to each other?

Incidence Algebras

Objective Linear Algebra •0000000 Applications

Objective Linear Algebra

The construction of I(S) can be generalized further using the formalism of **objective linear algebra** ("linear algebra with sets"):

Numerical	Objective
basis B	set B
vector v	set map $v: X \to B$
	M
matrix M	span span
	B C
vector space V	slice category $\operatorname{Set}_{/B}$
linear map with matrix M	linear functor $t_!s^*: \operatorname{Set}_{/B} \to \operatorname{Set}_{/C}$
tensor product $V \otimes W$	$\operatorname{Set}_{/B} \otimes \operatorname{Set}_{/C} \cong \operatorname{Set}_{/B \times C}$

Incidence Algebras

Objective Linear Algebra •0000000 Applications

Objective Linear Algebra

The construction of I(S) can be generalized further using the formalism of **objective linear algebra** ("linear algebra with sets"):

Numerical	Objective
basis B	set B
vector v	set map $v: X \to B$
	M
matrix M	span span
vector space V	slice category $\operatorname{Set}_{/B}$
linear map with matrix M	linear functor $t_!s^*: \operatorname{Set}_{/B} \to \operatorname{Set}_{/C}$
tensor product $V \otimes W$	$\operatorname{Set}_{/B} \otimes \operatorname{Set}_{/C} \cong \operatorname{Set}_{/B \times C}$

To recover vector spaces, take $V = k^B$ and take cardinalities.

Incidence Algebras

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$

Incidence Algebras

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$
basis S_1	set S_1

Incidence Algebras

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$
basis S_1	set S_1
$k[S_1] =$ free vector space on S_1	slice category $\operatorname{Set}_{/S_1}$

Incidence Algebras

Objective Linear Algebra

Applications

Abstract Incidence Algebras

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$
basis S_1	set S_1
$k[S_1] = $ free vector space on S_1	slice category $\operatorname{Set}_{/S_1}$
dual space $I(S) = Hom(k[S_1], k)$	dual space $I(S) := \operatorname{Lin}(\operatorname{Set}_{/S_1}, \operatorname{Set})$

Incidence Algebras

Objective Linear Algebra

Applications

Abstract Incidence Algebras

How do we construct I(S) as an "objective vector space"?

Numerical	Objective
basis B	set B
vector space V	slice category $\operatorname{Set}_{/B}$
basis S_1	set S_1
$k[S_1] =$ free vector space on S_1	slice category $\operatorname{Set}_{/S_1}$
dual space $I(S) = Hom(k[S_1], k)$	dual space $I(S) := \operatorname{Lin}(\operatorname{Set}_{/S_1}, \operatorname{Set})$

So an element $f \in I(S)$ is a linear functor $f = t_! s^* : Set_{/S_1} \to Set$ represented by a span

$$f = \begin{pmatrix} M \\ \swarrow & \uparrow \\ S_1 & \ast \end{pmatrix}$$

Incidence Algebras

Objective Linear Algebra

Applications

Abstract Incidence Algebras

So an element $f \in I(S)$ is a linear functor $f = t_! s^* : Set_{/S_1} \to Set$ represented by a span

$$f = \begin{pmatrix} M \\ s & t \\ S_1 & * \end{pmatrix}$$

Example

The zeta functor is the element $\zeta \in I(S)$ represented by

$$\zeta = \begin{pmatrix} S_1 \\ id \\ S_1 \\ & * \end{pmatrix}$$

Incidence Algebras

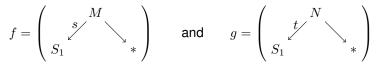
Objective Linear Algebra

Applications

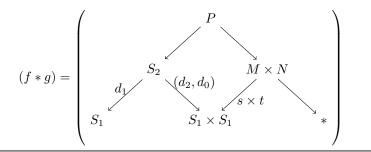
Abstract Incidence Algebras

Example

For two elements $f, g \in I(S)$ represented by



the convolution $f * g \in I(S)$ is represented by



Abstract Incidence Algebras

Advantages of the objective approach:

- Intrinsic: zeta is built into the object S directly
- Functorial: to compare zeta functions, find the right map $S \rightarrow T$
- Structural: proofs are categorical, avoiding choosing elements (e.g. computing local factors of zeta functions explicitly is difficult)
- It's pretty fun to prove things!

Incidence Algebras

Objective Linear Algebra

Quadratic Zeta Functions

For a quadratic number field K/\mathbb{Q} , the zeta function $\zeta_K(s)$ satisfies

 $\zeta_K(s) = \zeta_{\mathbb{Q}}(s)L(\chi,s)$

where $L(\chi, s)$ is the *L*-function attached to the Dirichlet character $\chi = \left(\frac{D}{L}\right)$, where D = disc. of K.

Incidence Algebras

Objective Linear Algebra

Applications •00000000000000

Quadratic Zeta Functions

For a quadratic number field K/\mathbb{Q} , the zeta function $\zeta_K(s)$ satisfies

 $\zeta_K(s) = \zeta_{\mathbb{Q}}(s)L(\chi,s)$

where $L(\chi, s)$ is the *L*-function attached to the Dirichlet character $\chi = \left(\frac{D}{\cdot}\right)$, where D = disc. of K.

Theorem (Aycock–K., '22)

This formula lifts to an equivalence of linear functors in $\widetilde{I}(\mathbb{N}, |)$:

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

where $N : (I_K^+, |) \to (\mathbb{N}, |)$ is the norm and $\chi^+, \chi^- \in I(\mathbb{N}, |)$.

In the numerical incidence algebra, this becomes

$$N_*\zeta_K = \zeta_{\mathbb{Q}} * (\chi^+ - \chi^-) = \zeta_{\mathbb{Q}} * \chi.$$

Incidence Algebras

Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

Let $S = (\mathbb{N}, |)$ and $T = (I_K^+, |)$, so that $N : T \to S$ induces

$$N_*: \widetilde{I}(T) \longrightarrow \widetilde{I}(S), \quad f \longmapsto \left(N_*f: n \mapsto \sum_{N(\mathfrak{a})=n} f(\mathfrak{a})\right)$$

Incidence Algebras

Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

Each term in the formula is represented by a span:

$$N_*\zeta_K = \left(\begin{array}{c} T_1 \\ N \\ S_1 \end{array} \right)$$

Incidence Algebras

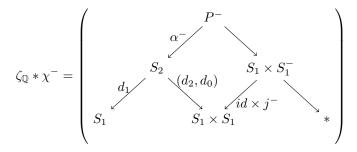
Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

Each term in the formula is represented by a span:



for a certain "vector" $j^-: S_1^- \to S_1$ representing χ^- .

Incidence Algebras

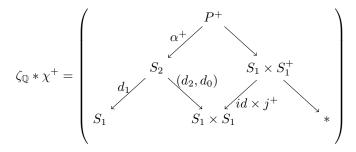
Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

Each term in the formula is represented by a span:



for a certain "vector" $j^+: S_1^+ \to S_1$ representing χ^+ .

Incidence Algebras

Objective Linear Algebra

Applications

Sketch of Proof

$$N_*\zeta_K + \zeta_{\mathbb{Q}} * \chi^- \cong \zeta_{\mathbb{Q}} * \chi^+$$

So the formula is an equivalence of the following spans:

$$\begin{pmatrix} T_1 \coprod P^- \\ N \sqcup d_1 \circ \alpha \swarrow \\ S_1 & * \end{pmatrix} \cong \begin{pmatrix} P^+ \\ d_1 \circ \alpha^+ \\ S_1 & * \end{pmatrix}$$

These are shown to be equivalent prime-by-prime and then assembled into the global formula.

Incidence Algebras

Objective Linear Algebra

Applications

Higher Order Zeta Functions

More generally, for any Galois extension $K/\mathbb{Q},\,\zeta_K(s)$ factors into a product of L-functions

$$\zeta_K(s) = \zeta_{\mathbb{Q}}(s) \prod_{\chi \neq 1} L(\chi, s)$$

where χ are the nontrivial irreducible characters of $Gal(K/\mathbb{Q})$.

Problem: values of $\chi(n)$ land in μ_n in general, so they can't be categorified with sets.

Higher Order Zeta Functions

More generally, for any Galois extension $K/\mathbb{Q},\,\zeta_K(s)$ factors into a product of L-functions

$$\zeta_K(s) = \zeta_{\mathbb{Q}}(s) \prod_{\chi \neq 1} L(\chi, s)$$

where χ are the nontrivial irreducible characters of $Gal(K/\mathbb{Q})$.

Solution (in progress with J. Aycock): upgrade to simplicial *G*-representations ($G = G_Q$).

Incidence Algebras

Objective Linear Algebra

Applications

Higher Order Zeta Functions

Actually, let's go for broke: for a(n admissible) G_K -representation V, we define an "*L*-functor"

$$L(V) = \begin{pmatrix} \bigoplus_{n=0}^{\infty} V_n \\ \swarrow & \searrow \\ \bigoplus_{n=0}^{\infty} R_K & R_K \end{pmatrix}$$

 $(R_K = modified representation ring incorporating Frobenius actions)$

Theorem (Additivity)

For two (admissible) G-representations V, W, there is an equivalence

$$L(V \oplus W) \cong L(V) * L(W)$$

in the incidence algebra $I(\mathbb{Q})$ of L-functors of G-representations.

Incidence Algebras

Objective Linear Algebra

Applications

Higher Order Zeta Functions

Actually, let's go for broke: for a(n admissible) G_K -representation V, we define an "*L*-functor"

$$L(V) = \begin{pmatrix} \bigoplus_{n=0}^{\infty} V_n \\ \swarrow & \searrow \\ \bigoplus_{n=0}^{\infty} R_K & R_K \end{pmatrix}$$

 $(R_K = modified representation ring incorporating Frobenius actions)$

Conjecture (Artin Induction)

For a(n admissible) G_K -representation V, there is an equivalence

$$L\left(\operatorname{Ind}_{G_K}^G V\right) \approx N_*L(V)$$

where $N_*: I(K) \to I(\mathbb{Q})$ is the pushforward along the norm map and \approx is "trace equivalence".

0000000000 0000000 0000000 0000000 00000	Introduction	Incidence Algebras	Objective Linear Algebra	Applications
				000000000000000000000000000000000000000

Elliptic Curves

For an elliptic curve E/\mathbb{F}_q , the zeta function Z(E,t) can be written

$$Z(E,t) = \frac{1 - a_q t + q t^2}{(1 - t)(1 - qt)} = Z(\mathbb{P}^1, t) L(E, t).$$

Theorem (Aycock–K., '23+ ϵ)

In the reduced incidence algebra $\widetilde{I}(Z_0^{\rm eff}(E)),$ there is an equivalence of linear functors

$$\pi_*\zeta_E + \zeta_{\mathbb{P}^1} * L(E)^- \cong \zeta_{\mathbb{P}^1} * L(E)^+$$

where $\pi: E \to \mathbb{P}^1$ is a fixed double cover and $L(E)^+, L(E)^- \in I(Z_0^{\text{eff}}(\mathbb{P}^1)).$

Pushing forward to $\widetilde{I}(Z_0^{\text{eff}}(\operatorname{Spec} \mathbb{F}_q)) \cong k[[t]]$, it already reads

 $t_*\zeta_E = t_*\zeta_{\mathbb{P}^1} * L(E).$

Introduction
000000000000

Incidence Algebras

Objective Linear Algebra

Applications

Motivic Zeta Functions

For any *k*-variety X, $Z_{mot}(X,t) = \sum_{n=0}^{\infty} [\text{Sym}^n X] t^n$ decategorifies to other zeta functions by applying motivic measures (point counting, Euler characteristic, etc.)

Das–Howe ('21) lift $Z_{mot}(X,t)$ to a numerical incidence algebra

$$\widetilde{I}_{mot}(\Gamma^{\bullet,+}(X)) = \prod_{n=0}^{\infty} K_0(\operatorname{Var}_{/\Gamma^n X})$$

where $\Gamma^n X$ are the divided powers of X.

Introduction
000000000000

Incidence Algebras

Objective Linear Algebra

Applications

Motivic Zeta Functions

For any *k*-variety X, $Z_{mot}(X,t) = \sum_{n=0}^{\infty} [\text{Sym}^n X] t^n$ decategorifies to other zeta functions by applying motivic measures (point counting, Euler characteristic, etc.)

Das–Howe ('21) lift $Z_{mot}(X,t)$ to a numerical incidence algebra

$$\widetilde{I}_{mot}(\Gamma^{\bullet,+}(X)) = \prod_{n=0}^{\infty} K_0(\operatorname{Var}_{/\Gamma^n X})$$

where $\Gamma^n X$ are the divided powers of X.

Work in progress: lift $Z_{mot}(X,t)$ to an objective incidence algebra $I(\Gamma^{\bullet,+}(X))$ in the category of simplicial *k*-varieties. Passing to K_0 recovers Das and Howe's construction.

More Dreams

Here are some other things we're working on:

- Study the zeta function of an algebraic stack $\mathcal{X} \to X$ in terms of ζ_X , e.g. over \mathbb{F}_q , Behrend defines $Z(\mathcal{X}, t)$ for such a stack.
- Lift motivic *L*-functions to the objective level and prove formulas, e.g Artin induction.
- Realize archimedean factors of completed zeta functions as elements of abstract incidence algebras, e.g. the factor at ∞ $\zeta_{\infty}(s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right)$ lives in a certain Hecke algebra.

Key insight: decomposition sets ~> decomposition spaces

Incidence Algebras

Objective Linear Algebra

Applications

Thank you!